
We Know the Object

A Reference Architecture for Component Based Development
Keywords: Architectural layering, OO design, component based design, UML, packages, re-use.

Mark Collins-Cope (markcc@ratio.co.uk) and Hubert Matthews (hubert@ratio.co.uk)
Ratio Group Ltd.

1. Abstract

This paper proposes a reference architecture for object-oriented/component based systems consisting of
five layers. Our purpose is to show how this model helps us to understand the overall structure of a
system, how layering helps to clarify our thoughts, and how it encourages the separation of concerns such
as the technical v. the problem domain, policy v. mechanism, and the buy-or-build decision.

Assuming an application is made up of a number of components, the layering we propose is based on
how specific to the particular requirements of an application each component is. More specific (and
therefore less reusable) components are placed in the higher layers, and the more general, reusable
components are in the lower layers. Since general non-application components are less likely to change
than application specific ones, this leads to a stable system as all dependencies are downward in the
direction of stability, and so changes tend not to propagate across the system as a whole.

As well as presenting the reference model, this paper also discusses and clarifies in concrete terms the
meaning of one architectural layer being above another. Perhaps surprisingly, our background research
has shown that the meaning of the layering metaphor is the subject of some confusion. Specific examples
of this are given in the paper.

The model presented contains five layers, which are as follows: the interface layer; the application layer;
the domain layer; the infrastructure layer; and the platform layer.

2. Introduction

Architectural layering is a visual metaphor whereby the software that makes up a system is
divided into bands (layers) in an architectural diagram. Many such diagrams have been used, and
by way of introduction we show two of these.

Hardware

Device Drivers

O/S

Apps

LIBS

Figure 1 – Layered architecture – Example from Szyperski

Szyperski [Szperski98] presents a view of a strictly layered architecture as can be seen in figure
1. Note that this model has the device drivers below the operating system - a topic we will return
to discuss later in this paper.

Architectural Reference Model Page 2 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

Figure 2 shows a type of ad-hoc architecture diagram [Carlson99] that is not uncommon in
modern technical documentation. The example shown describes the architecture of the IBM San
Fransisco product.

Platforms

Foundation

Common Business Objects

IB
M

 S
an

 F
ra

ns
is

co
A

pp
lic

at
io

n
B

us
in

es
s

C
om

po
ne

nt
s

Lo
gi

st
ic

s

H
um

an
R

es
ou

rc
es

M
an

uf
ac

tu
ri

ng

C
os

t
A

cc
ou

nt
in

g

O
th

er
 a

pp
lic

at
io

ns

O
th

er
 a

pp
lic

at
io

ns

A
cc

ou
nt

in
g

C
U

ST
O

M
ER

 S
O

LU
TI

O
N

Figure 2 - Typical 'ad-hoc' architectural layering diagram

Some common themes run through these diagrams:
• that it is possible to identify a number of layers in the construction of pieces of software,
• that some layers sit on top of others (although there may be some question as to what one

layer being above another actually means – see section 3.4), and
• that one may broadly categorise layers as being either horizontal (applicable across many,

if not all business domains), and vertical (applicable across a subset or only one domain);

Turning to UML class diagrams (a younger notation), we notice that common convention usually
place subclasses, which are more specialised, below their parents, which are more general
purpose. This convention is the exact opposite of the architectural convention highest is most
specific, and the cause of a undoubtedly confusing visual metaphor mismatch which we discuss
further in our article The Topsy Turvy World of UML [Collins-Cope+00].

Base

Derived1 Derived2

Typical UML class diagram layout

Base

Derived1 Derived2

Architectural diagram showing layers

more general

more specificmore general

more specific

Figure 3 - Class diagrams and architectural views

This paper takes a revised look at application layering, with a particular focus on clarifying the
unstated assumptions in such diagrams, and proposes a five layer architectural reference model
for component based OO applications that can be used to assist in the design of component based
systems.

3. Proposed model

3.1. Motivation

The objectives behind the architectural reference model presented in this paper are as follows:
• to provide a framework for decision making during the design of components,

Architectural Reference Model Page 3 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

• to support and re-enforce the appropriate application of good OO design principles, in
particular those concerned with stability and dependency management,

• to provide an architectural framework to encourage re-use,
• to encourage re-use of business specific (not just technology) components,
• to position components as the unifying concept that tie together different architectural

views of a system, and
• to provide clarification on the meaning of layering in a component context.

We come back to these motivations in the conclusions section of this paper.

3.2. Reference Model

We define the architecture of a system as the structural relationship between the individual
components that together create an application as a whole1. We define a component as an
(object-oriented) software development deliverable implementing a well defined interface that is
released at the binary (or equivalent) level2, which may have a number of well-defined extension
points to enable it to be customised.

Examples of components conforming to this definition might include '.o' or '.a' files on a Unix
system, '.obj', '.dll' or '.ocx' files on a Windows based system. Components developed within a
COM or EJB type environment are, of course, equally within this definition3. Note, however,
that in most of the following discussion we consider the design view of components, which we
represent as packages in UML notation.

Figure 4 shows our proposed reference model. Figure 5 shows the same model populated with a
number of classes, components and relationships between them, taken from an example banking
application. Two external actors [Jacobson+94] interact with the system: a bank clerk (using a
debit dialog box), and an external banking system (using an intermediate file format).

(application) Interface layer

Application (specific) layer

Domain (specific) layer

(technical) Infrastructure layer

Platform (software) layer

Application specific

General purpose

range of domains of applicability

Figure 4 - Layered architecture reference model

1 We accept there are other defintions!
2 Three points here:
a) Framework is a term for a software deliverable which is generally assumed to 'drive' an application, leaving hooks for customisation. As can be
seen in figure 6 - in which certain components 'drive' higher layers, whilst also being 'driven' by them, we do not see a clear distinction between
components and frameworks, but rather view them as a continuum. We use the term 'component' generically across this continuum.
b) For the purposes of this paper, we discuss components as an extension of object technology, but note that we accept that components can be
written in non-OO languages.
c) This definition presented does not preclude source parameterised components: in this case one would generate the binary file having
instantiated the parameters in order to fit it into the framework described.
3 We see technologies such as CORBA, COM and Java Beans as component inter-operability support technologies, which may or may not be
present in a 'component based system.' In the example shown in figure 6, they are not present.

Architectural Reference Model Page 4 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

GUIDebit
 DialogBox

clerk central banking system

FileExchange
Manager

DebitControl

DBTransaction
Manager

Account
DebitRule
Checker

AppDebit
Rules

Persistent
Class

Class Component
(<<component subsystem>>)

1-1 directed
association

is a subclass of

*

GUIDialog Other platform services … (e.g. RBDMS)

GUI Environment -
eg. Windows/Motif

Bespoke persistence
component

1-many directed
association

*

Generic account
component

Application specific
use of account
component

... ...

... ...

 Interaction with external world

Figure 5 - Layered architecture populated with an example

The layers presented in this model may be summarised as follows:
• Highest (and most specific) in the layering is the application interface4 layer. This layer is

responsible for managing the interaction between the 'outside world' and the lower layers
within the application. It typically consists of components providing GUI interface
functionality - managing the interface to human users, and/or components providing
external system interfaces - managing the interface to external systems. This layer often
contains what Jacobson et al. call boundary classes [Jacobson+94].

In the example application shown in figure 6, we can see two classes packaged within this
layer. The GUIDebitDialogBox class implements an application specific dialog (to enter a
debit). The FileExchangeManager class reads an external file format. Both classes use the
application specific DebitControl class to process the information they receive from the
outside world.

• Below this is the application specific layer. This layer is comprised of objects and
components that encapsulate the major business processes and associated business rules
automated within an application. Typically it will contain many objects akin to Jacobson’s
(use case) 'control' objects [Jacobson+94]; and often also acts as the 'knowledge' layer in
Fowler's operational/knowledge split [Fowler98] (another description of this is separating
policy from mechanism.) It may also contain specialised subclasses implementing
interfaces left 'open' (as in Open Closed Principle [Meyer97][Martin96]) by the more
general purpose components in the layer below, and typically does not contain persistent
business classes. Most importantly, this layer contains the “glue” to tie together
components within the domain layer below.

In the example application shown in figure 6, we can see two classes packaged within an
application specific debit component. The DebitControl class takes over application
control when asked to do so by one of the higher level interface classes. It then drives the
domain level account class to implement its functionality (which may involve several
method calls on account). Note that the DebitControl class is derived from a database
transaction management class defined in the bespoke persistence component in the

4 We chose the term interface rather than 'presentation', as some application interfaces are to external systems, and the term presentation tends to
imply a user-interface.

Architectural Reference Model Page 5 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

infrastructure layer5. The other class - App. debit rules - implements the debit-rule checker
interface (derived from the lower level account component) to customise the debit
checking rules as required by this application.

• Next is the business domain specific layer. This layer is comprised of components which
encapsulate the interface to one or more business classes, which are specific to the domain
(area of business) of the application, and are generally used from multiple places within
the application. They might also be used by a family of related applications - a software
product line. This layer typically contains the 'entity' classes discussed by Jacobson et al in
[Jacobson+94].

The example application shown in figure 6 shows an account component in this layer. The
account class is driven by higher level components to undertake account related activities
such as debiting and crediting of monies. As part of this, it uses a DebitRuleChecker
interface (abstract class) to enable individual applications to customise the particular debit
checking rules that may be applied (e.g. can go overdrawn, can't go overdrawn, etc.) This
is an example of the open/closed principle [Meyer97][Martin96] being used to implement
an operational/knowledge split [Fowler98]. Note also that, being persistent, the account
class is derived from the persistence class in the infrastructure layer6.

• Then comes the technical infrastructure layer. This layer is made up of bespoke
components that are potentially re-usable across any domain, providing general purpose
'technical' services such as persistence infrastructure, general programming infrastructure
(e.g. lists, collections).

The example application shown in figure 6 shows a general purpose persistence component
being present in this layer. In this component, a DBTransactionManager class keeps tabs
on a number of PersistentClasses7, which provide the hook by which higher level domain
classes many be made persistent.

• Finally, most re-usable of all, is the platform software layer. This is comprised of standard
or common-place pieces of software that are brought in to underpin the application (e.g.
operating systems, distribution infrastructure (CORBA\COM), etc.) The example
application shown in figure 6 shows a relational database and a GUI class library being
used to build the application.

3.3. Associated rules

Some simple rules are associated with this model:
• there should be a clear and simple mapping between component structure and source code

structure (the simplest being a 1-1 mapping), and between the component structure any
other analysis and design artefacts produced during the development process (e.g. the
design view of a component, as shown in a package diagram, or the use case view of a
component, as shown using packages of use cases);

• the level of a component is the highest level of any of its constituent classes;
• components should not (and by the above definition, cannot) cross layers8;

5 This will implement database transaction begin and end commands, and manage the rollback of database changes if necessary.
6 Since the original draft of this paper was written, Sun have released their EJB product. It is particularly interesting to note that the session
bean/entity bean separation in EJBs mirrors the application/domain layer separation in this paper.
7 Transactions encapsulate a group of related operations which business logic dictates must be either completed in their entirety, or not executed
at all. The DBTransaction class is used to encapsulate this type of transaction. If the transaction succeeds, it can then automatically write all
modified objects back to an underlying database – hence the need for tabs to be kept on all objects that may be modified.
8 Here we ignore issues of 'convenience' packaging for customers (e.g. an account component that provides an GUI interface and some business
logic may be packaged as a single component on release, following the RREP [Martin96-3]).

Architectural Reference Model Page 6 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

• the compile time dependencies between components within any particular layer should be
to components in either the same or a lower layer;

• the application and domain layers should be technology free in the interface components
within them present to the outside world;

3.4. Layering Semantics

Most layering diagrams omit to discuss the meaning of one layer appearing on top of another, or
any description of the axis of the diagram. Earlier reviews of this paper, and the example shown
in figure 1 have lead us to believe some further discussion of these aspects of the layering model
presented here is desirable:
• Vertical axis semantics. The vertical axis of figure 5 indicates the specificity (how specific

it is to a particular application/environment) of a component in the application. The higher
it appears in the layering of the reference model, the more specific it is. The lower it
appears, the more general purpose it is. This has lead us to coin the phrase the centre of
gravity of the application - essentially a way of classifying the overall architectural feel of
a system as being either 'high' (very application specific, difficult to extend without
substantial modification to existing components), or 'low' (good layering applied, likely to
have hooks for extension without any modification to existing components).

• Layer ordering (highest to lowest) is based on component compile time dependencies. In
figure 1, Szyperski shows a layering model in which the device driver layer is shown
below the O/S layer. Whilst this seems appropriate at first glance, a deeper examination
reveals the ordering in Szyperski’s example is not based on the same criteria as the
layering presented in our model. In our model, layer ordering is based on the compile time
dependencies between the components that reside within the layer. In the terms presented
in this paper, the device driver interface of an operating system is an extension point to
enable customisation of the operating system “component” to a piece of particular
hardware. The operating system is more generic (general purpose) than the device drivers
it uses (which are tied to particular hardware). The device drivers are also dependent upon
the operating system for their definition – their interface must conform to the calling
interface used by the operating system (they will use the function prototypes defined in an
operating system header file) – not the other way round. For this reason, we would present
the middle three layers of figure 1 in the following manner (with additional detail to show
interface definitions and instantiation of interface)9:

Hardware

Device Drivers

O/S O/S CLASSsDEVICE DRIVER INTERFACE

DEVICE DRIVER

LIBS

*

LIB CLASS

Figure 6 – Szyperski’s example using our layering rules

Summarising, the layering semantics presented here tie together the concept of the specificity of
a component (how much detail is filled in, how specific it is) with the notion of compile time

9 Note, however, that using our classification scheme, the bottom two layers of figure 7 would both reside at the platform layer – see section 7 for
further discussion of this. Note also, in a non-OO operating system, pointers to functions would be used instead of abstract interface instantiation.
The dependency implications of this are, however, identical.

Architectural Reference Model Page 7 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

dependencies. The higher a component in the model, the more specific it is likely to be, and the
more dependent it is likely to be on other components, and vice versa.

3.5. Further notes

A number of additional points are worthy of brief discussion:

• A component oriented approach. We have defined our view of architecture as one being
based on the structural inter-relationships between the binary components that are used to
make up a system. We adopt this focus because at the end of the software development
process we would like to have a number of well-defined and well-structured, loosely
coupled, internally cohesive binary components that we may, without modification, use
again in extending the current application (or possibly another application).

• GUI components. All GUI components do not reside at the interface level. The interface
level may contain application specific refinements of general purpose GUI components
(e.g. an application specific dialog box), however the general purpose elements
themselves (e.g. the generic dialog box from which the application specific one is derived)
live at the platform level. The same is true for any general purpose GUI component
without application specific customisation (e.g. a graph drawing widget).

• Substitutability. Many discussions of architectural layering focus on being able to replace
one whole layer with another – they are effectively treating the whole layer as a single
component. This is not the purpose of the model presented here, which is intended as a
guide to determining the contents of a particular component by deciding upon within
which layer it is appropriate it reside. Substitution would take place at the individual
component level, not on a per layer basis.

• Three-tier architecture. It is interesting to see how the model presented here maps to the
classical view of a three-tier architecture (presentation, business logic, database). The
model presented here can be viewed at a conceptual level as being independent of detailed
deployment issues. However, it can also be used for applications deployed across multiple
machines/processes – for example as in the classic three-tier model. In this case:
– the presentation tier would contain the interface layer, (possibly) the application

layer (in a thick client configuration), and some components of the platform layer
(e.g. CORBA client components, generic GUI components).

– the business logic tier would (possibly) contain the application layer (in a thin client
configuration), the domain layer, the infrastructure layer, and some components of
the platform layer (e.g. distributed ODBC client components , CORBA server
components), and

– the database tier would contain the remainder of the platform components (e.g. the
RDBMS, ODBC server components, etc.);

the net result being that the higher layers are deployed in one particular machines/process,
and that the lower two layers are often present on multiple processes/machines.

4. How the layering helps us understand design

To see how layers and particularly our visual metaphor help us, let’s examine the Adapter
pattern from the Gang of Four’s book [Gamma+95].

Figure 7 shows an adapter being used to allow two components with incompatible interfaces to
be used together (a common problem in component design). The billing adapter implements the
Account component’s outward billing interface and passes on any messages to the credit card
billing component’s inward billing interface, with possibly modified parameters. Since both of
the components are reusable and not specific to this application they belong in the domain layer.

Architectural Reference Model Page 8 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

The adapter, on the other hand, is very specific to this particular configuration and so it is not in
general reusable and so belongs in the application layer instead – it is acting as application-level
“glue” for the other components. Note here that the two component dependencies point
downwards – one being caused by an inheritance relationship, the other by a directed
association.

Account CreditCard
Billing

CreditCard
BillingAdapter

Application layer

Domain layer

Figure 7 - Getting an account paid by credit card

For a second example, we show in figure 8 one of the refactoring patterns from Martin Fowler’s book
[Fowler+99]: Separate Domain from Presentation.

Order

OrderWindow OrderWindow

<< component
subsystem >>is refactored to

Interface layer

Application (or domain) layer

<< component
subsystem >>

<< component
subsystem >>

Figure 8 - Separate Domain from Presentation

Here we see a GUI dialog class containing business logic being split into two. Our architectural overlays
add context to this, showing that in doing so what was previously an interface layer component has now
been split into two components: one still in the interface layer, and one in the application specific (or
possibly domain) layer. The refactoring visibly lowers the centre of gravity of the application. Two more
benefits are that we have separated the usage of the Order component from its implementation (in other
words we have separated policy from mechanism), and that we have separated the technology-free Order
component from the inherently technology-based OrderWindow, thereby giving us more portable code
and allowing us more freedom in deployment (for example in a three-tier system).

Architectural Reference Model Page 9 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

<< component
subsystem >>

Employee
getQuota()

Salesman Engineer

<< component
subsystem >>

Employee

Salesman
getQuota() Engineer

<< component
subsystem >>is refactored to

Application Layer

Domain Layer

Figure 9 - Push Down Method (reworked by us as Pull Up Method!)

In figure 9, Fowler shows us an inheritance hierarchy with an inappropriately placed method,
which is effectively polluting the component which contains it by forcing it up to an
inappropriate level. The refactored version shows the component being split into two (over two
levels), the method having being moved out the Employee class and into the Salesman class.
This enables the Employee component to reside at a more general level in the hierarchy, and
again visibly lowers the centre of gravity of the application.

5. Broader issues

• No name, no discussion
Nowadays we talk about composites and flyweights [Gamma+95], but this would not have
been possible ten years ago. Having a standard layering vocabulary would be of clear
benefit in enabling developers to discuss the level at which components might lie.

• No architecture, no re-use
An architectural framework is key to achieving re-use [Jacobson+97]. Re-use requires a
clear understanding of what is specific and what is general in designing a set of related
components. The reference model assists in understanding these separations, whilst also
adding clarity to the layering semantics.

• Architecture adds context
An architectural view adds additional context to many design patterns. Take the observer
pattern [Gamma+95]. If packaged together in a single component, the base classes Subject
and Observer can be seen as providing a low level (infrastructural) flexible component
from which higher level (domain, application or interface) concrete observation
mechanisms can be built. The derived ConcreteSubject and ConcreteObserver can be seen
as application, domain or interface specific extensions to a general purpose mechanism.

• Architecture aids (good) design
The layering presented also supports a number of OO design principles: the open closed
principle [Meyer97][Martin96] – the idea being that lower layer components are closed
against modification, and higher layer components extend the open aspects of them; the
stable dependencies principle [Martin97] - the layers are organised based on expected
stability of their contents – the lower layer components being more stable; and the acyclic
dependency principle[Martin97] - the depend downwards rule supports this principle.

• Invariants

Architectural Reference Model Page 10 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

One important part of the design of component based systems is the identification and
allocatiion of responsibility for maintaining invariants across (possibly bought in)
components. It may be necessary for two components in the domain layer to maintain an
invariant relationship - e.g. customer address must be maintained in both components. The
responsibility for maintaining invaritants across components resides in a layer above that in
which the components reside. So in the case of our customer address invarient, it would be
the responsibility of a component within the application layer to ensure it was not violated
(perhaps using a change event generated when the customer address was changed in either
domain layer component).

6. A brief philosophical aside

Many classification systems are blurred around the edges, and our layer classification is no
exception. In his excellent book Darwin's Dangerous Idea [Dennet96] Dennet describes how
examining the characteristics of a particular species of gull, starting in Britain and moving west
to east around the globe, yields a set of gradually evolving changes until, as the loop closes and
the examiner returns to Britain, a different species of gull is finally found next to the original!
Species clearly have blurred edges, so we’re in good company!

7. Compromises

The model presented here is not perfect, but a compromise between simplicity and meeting the
stated set of objectives. Some potential shortcomings of the model are as follows:
• It would have been superficially pleasing to have a rule that said: you can only depend on

the layer below you. However, upon deeper consideration we believe that the reason for
this is an emphasis in previous discussions of layered architectures on complete
substitutability of layers. As discussed in section 3.5 (substitutability) this is not the
motivation behind the model presented here.

• There are clearly times when there will be sub-layerings within the layers presented, and
we could have made these explicit. However, we feel the price would have been too high
in terms of additional complexity. Instead, we prefer to allow the option of discussing the
'lower application' layer to resolve such issues.

• We have chosen to separate the infrastructure and platform layers based on a buy versus
build criteria. Architectural purists may object to this - why should the layer in which a
particular component resides be dependent on whether you buy or build it? Our motivation
is simple: we wanted to put the focus clearly on the aspects of the application being
developed. For similar reasons we have been unconcerned with sub-layerings within the
platform layer.

8. Conclusions

Summarising, in this paper we have proposed a simple five layered reference model and a
number of associated rules to assist the software designer. We have noted that, by convention,
UML class diagrams are upside down, at least when considered in parallel with architectural
layering conventions, and that this is a block to visualising one aspect of what happens during
refactoring. We have shown that once this is addressed, UML and the architectural model
complement and re-enforce each other.

We have identified examples from Gamma et al’s Design Patterns book, and Fowler's refactoring
book that show the reference model adds context to well known design (and refactoring)
paradigms.

Architectural Reference Model Page 11 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

We have discussed how the model supports good OO design principles, in particular those
concerned with ensuring stable dependency management, and have emphasised and clarified the
rules on which our layering model is based (specificity/generality and compile time
dependency).

Coming back to the objectives detailed in section 3.1, we believe the architectural reference
model presented here:
• provides a framework for decision making during component design by providing a

number of layers within which the developer can position their components,
• supports and re-enforces the appropriate application of good OO design principles, by

encouraging components to be extended (customised) by other components in higher
layers, and by imposing a downwards only dependency rule,

• encourages re-use by providing a layering system and associated set of rules that puts the
focus of design on the specificity/generality of components, encouraging components
contents to be seperated on the basis of the layering provided,

• provides clarification on the meaning of layering in a component context, by putting the
emphasis on compile time dependency management,

• encourages re-use of business specific (not just technology) components by presenting two
layers within which business components may reside. This encourages more generic
functionality to be in the domain layer, and application specific customisation/glue type
functionity to be in the application layer, and

• positions components as the unifying concept that tie together different architectural views
of a system, by stating that the package structure of the system (and associated
specification, design or use case views) should be based on the target component structure.

9. References and credits

[Szperski98] Clemens Szyperski, Component Software: Beyond Object-Oriented Programming,
January, Addison Wesley Longman, 1998.

[Carlson99] Brent Carlson, Design Patterns for Business Applications, the IBM SanFransisco
Approach, ObjectiveView Issue 3, available at www.ratio.co.uk/ObjectiveView.htm, 1999.

[Collins-Cope+00] The Topsy Turvy World of UML, Hubert Matthews and Mark Colllins-Cope,
ObjectiveView Issue 4, available at www.ratio.co.uk/ObjectiveView.htm, 2000.

[Jacobson+94] Ivar Jacobson, Magnus Christerson, Partrik Jonsson, Gunnar Övergaard, Object
Oriented Software Engineering - A Use Case Driven Approach, Addison-Wesley, 1994.

[Gamma+95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Fowler98] Martin Fowler, Analysis Patterns - Reusable Object Models, Addison Wesley, 1998.
[Jacobson+97] Ivar Jacobson, Martin Griss, Patrik Johsson, Software Reuse - Architecture, Process and

Organization for Business Success, Addison Wesley Longman, 1997.
[Meyer97] Bertrand Meyer, Object Oriented Software Engineering (second edition) - Prentice

Hall Professional Technical Reference, Published 1997.
[Martin96] Robert C. Martin, The Open Closed Principle, C++ Report, Jan 1996.
 [Fowler+99] Martin Fowler with contributions from Kent Beck, John Brant, William Opdyke,

and Don Roberts, Refactoring - Improving the Design of Existing Code, Addison Wesley,
1999.

[Martin97] Robert C. Martin, Stability, C++ Report, Feb 1997.
[Gamma+95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns -

Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Architectural Reference Model Page 12 of 12

Architectural Reference Model.doc(Rev: 4) - 10/19/00

[Dennet96] Daniel C. Dennet, Darwin's Dangerous Idea: Evolution and the Meanings of Life,
Touchstone Books, 1996.

Particular thanks are due to Andy Vautier, Nigel Barnes and Keith Haviland of Andersen
Consulting, upon whose 1 million line+ C++ project many of the underlying concepts presented
in this paper were formulated. Further detailed technical discussion this project can be found at
www.ratio.co.uk/techlibrary.html.

