
ObjectiveView

A Magazine for the Professional Software Developer

Major Features
Kent Beck Interview

C# 2.0 & 3.0 Overview

Refactoring Databases

OODBMS Revisited

Working with legacy code

Opinion
Grady Booch on SOA

Kevlin Henney – why the
waterfall fails

Matt Stephens – Ruby I
Love You (not)

Plus
Ed Yourdon – structured
analysis retrospective

Treating Tests as Software

EA’s model/code
synchronization features..

Paul Gauguin - Tahitian Landscape

 web distribution partner

Page 1 of 57

http://www.iconixsw.com/
Tel: + 1 (310) 474-8482
Fax: +1 (310) 474-8609

Email: umltraining@iconixsw.com

web distribution partner

http://www.softwarereality.com/

published by

www.ratio.co.uk

 Development, Training and Consultancy

http://www.objectiveviewmagazine.com/
for back issues – see page 4 for listing

web distribution partner

http://www.thoughtworks.com/

web distribution partner

http://www.ambysoft.com/

web distribution partner

http://www.obtiva.com/

web distribution partner

Information Technology services
through lean software development

http://www.jacoozi.com/

web distribution partner

Dodeca
T e c h n o l o g i e s

http://www.dodeca.co.uk/

web distribution partner

The BCS Software Practice Advancement
SIG

http://bcs-spa.org/

http://www.iconixsw.com/�
http://www.softwarereality.com/�
http://www.ratio.co.uk�
http://www.thoughtworks.com�
http://www.ambysoft.com�
http://www.obtiva.com�
http://www.jacoozi.com/�
http://www.dodeca.co.uk/�
http://www.bcs-spa.org/�
http://www.iconixsw.com/
http://www.softwarereality.com/
http://www.ratio.co.uk/
http://www.objectiveviewmagazine.com/
http://www.thoughtworks.com/
http://www.thoughtworks.com/
http://www.ambysoft.com/
http://www.obtiva.com/
http://www.jacoozi.com/
http://www.dodeca.co.uk/
http://www.dodeca.co.uk/
http://bcs-spa.org/

ObjectiveView

CONTENTS

Interview with Kent Beck

 6

Ruby I Love You (Not)

11

C# 2.0 and 3.0

13

SPA Conference Report

26

Grady Booch on SOAs

27

Refactoring Databases

28

The Object Database Alternative

35

Making Progress – Legacy Code

41

EA’s Model Code Synchronisation

44

Getting Over the Waterfall

49

Yourdon - Structured Analysis –
Retrospective

51

Treating Tests as Software

55

CONTACTS

Editor

Mark Collins-Cope
mailto:oveditor@objectiveviewmagazine.com

Editorial Board
 Scott Ambler
 Kevlin Henney

Production Assistance
 Adam Weremczuk

Free subscription

 PDF by email – email to:
 mailto:objectiveview@objectiveviewmagazine.com

(with subject: subscribe)

 Feedback/ Comments /Article Submission /Letters

mailto:oveditor@objectiveviewmagazine.com

 Circulation/Sponsorship Enquiries
mailto:oveditor@objectiveviewmagazine.com

Authors may be contacted through the editor. All
questions or messages will be passed on.

Distribute ObjectiveView
 It’s easy. You link to ObjectiveView using our linkgif, and your

logo will appear on all copies of the magazine. Contact
 oveditor@objectiveviewmagazine.com

web distribution partner web distribution partner

International Association of Software
Architects

http://www.cpttm.org.mo/

Page 2 of 57

http://www.iasahome.org/

web distribution partner

http://www.methodsandtools.com/

web distribution partner

http://www.agilemovement.it/

web distribution partner

http://www.implementingscrum.com/

web distribution partner

http://www.codegeneration.net/

web distribution partner

http://www.softdevarticles.com/

http://www.cpttm.org.mo/�
http://www.iasahome.org/�
http://www.methodsandtools.com/�
http://www.agilemovement.it/�
http://www.implementingscrum.com/�
http://www.codegeneration.net�
http://www.softdevarticles.com/�
mailto:oveditor@objectiveviewmagazine.com
mailto:objectiveview@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
http://www.softwarereality.com/
http://www.objectiveviewmagazine.com/
mailto:oveditor@objectiveviewmagazine.com
http://www.cpttm.org.mo/
http://www.iasahome.org/
http://www.methodsandtools.com/
http://www.agilemovement.it/

objectiveview – www.objectiveviewmagazine.com for back issues

Welcome to Issue 10

Never let it be said that we only ram our
own opinions down reader’s throats. In
issue 9 we covered Ruby/Rails in some
detail - and gave the Ruby/Rails
approach a positive editorial. In this
issue Matt Stephens of SoftwareReality
gives a counter opinion. Not that we
agree with him of course.

I was pleased that Kent Beck agreed to an interview with
ObjectiveView. One of themes that emerges in this is the
lack of civil discussion about issues in software
development. It's fine that discussion groups sometimes
have passionate debate - that just shows that we care
about what we do - but all to often discussions
degenerate into hate mail between different camps. This
really isn't on. A good moderator can help of course
(though many groups are unmoderated), and my OV
colleague Scott Ambler pointed me at the following set
of discussion guidelines:
http://www.agilemodeling.com/feedback.htm#Rules

Otherwise, issue 10 is something of a mixed bag of
articles - the most common theme being databases, with
automated testing coming second. Mike Tauty of
Microsoft gives us the lowdown on future directions for
C# - in particular planned features for C# 3.0 - including
C# facilities for "language-native" relational database
queries. Scott Ambler shows us that it is possible to
refactor database applications - this being a common
objection to an agile development approach. Word on
the street is that many data professionals are resistant to
agile development approaches. Which is a shame as
they can clearly play an active role on such projects –
see http://www.ambysoft.com/books/agileDatabaseTechniques.html
for more information.

Taking a different direction entirely, Rick Grehan
overviews the current state of play in Object Databases.
On the subject of which, a recent benchmark (007)
found that db4o (an Object database) was up to 55x
faster than Hibernate/ PostgreSQL. That is interesting,
but please read the full press release before jumping to
conclusions (http://www.db4o.com/about/news/release/2006_09_28.aspx).

On the automated testing front, Kevin P. Taylor tells us
why we should treat our test code with the same

reverence we treat our core application code. This
assumes, of course, that we treat core code well in the
first place! Many developers, however, have to deal with
a code base that has been cruelly neglected. To this
end, Michael Feathers explains how adding automated
tests to legacy code can help nurture it slowly back to
health.

On the opinion front Kevlin Henney gives what I think is
an excellent rationale for why Waterfall development is
more prone to failure than iterative and incremental
approaches. Not that all waterfall projects fail of course,
but there is little doubt in my mind that the risks of failure
are significantly higher. Other opinion includes Grady
Booch tackling the hype surrounding Service Oriented
Architectures (SOAs) and, as I mentioned, Matt
Stephens discussing why he doesn't back Ruby.

Last, but not least, Doug Rosenberg discusses the
model/code synchronisation features of the Enterprise
Architect UML tool. More often than not, models are
simply discarded once they have served their initial
purpose – the cost of maintaining them is considered too
high. On highly iterative / incremental projects this is a
pain - once past the first iteration (barely the start of the
project) it becomes more and more difficult to use
modeling intelligently. Perhaps this solves the problem?

On the more general front, here are some readership
stats. ObjectiveView is currently going from strength to
strength. Issue 9 had about 40,000 hits and it's still
clocking up 2,000 a month.

Issue 9
March 22285
April 5382
May 3675
June 2048
July 2026
August 2094
September 2031

39541

Downloads issues 9 broken down over the last 6 months. Figures do
not include email subscribers.

Mark Collins-Cope,

London, October 2006.

Starting in issue 11 we will be publishing a selection of letters from readers. If you would like to comment on any aspect of software development, or
perhaps just on an article, email oveditor@objectiveviewmagazine.com with your full contact details.

Page 3 of 57

http://www.agilemodeling.com/feedback.htm#Rules
http://www.ambysoft.com/books/agileDatabaseTechniques.html
http://www.db4o.com/about/news/release/2006_09_28.aspx
mailto:oveditor@objectiveviewmagazine.com

objectiveview – www.objectiveviewmagazine.com for back issues

Back Issues
ObjectiveView Issue #9 - Newer Technologies Focus

• Alex Ruiz on AspectJ
• Richard Vaughan on AJAX
• Amy Hoy introduces Ruby
• Obie Fernandez - Ruby on Rails
• Rebecca Wirfs-Brock - Specs are Bad!
• Kevlin Henney - Abstraction - Down on the

Upside
• Scott Ambler - Glacial Development :-)!
• Ken Pugh - Prefactor and be Agile

ObjectiveView Issue #8 - Agile Development Special
• Kent Tong on Turning Comments into Code
• Elfreide Dustin on Unit Testing
• Tim Mackinnon on Agile Project Retrospectives
• Scott Ambler with the latest update on Agile

Model Driven Development
• Doug Rosenberg and Matt Stephens on

Combining UML with TDD

ObjectiveView Issue #7 - Focus on .NET
• Microsoft C# author Jon Jagger overviews

C#.NET
• Paul Hatcher takes a look at VB.NET
• Richard Vaughan on Managed C++ under .NET
• Interview with author Doug Rosenberg and Matt

Stephens on their forthcoming book: XP
Refactored.

ObjectiveView Issue #6 - Component Development
• John Daniels & John Cheesman (Authors: UML

Components) on UML Components
• Paul Allen (Author: Realizing e-Business With

Components) on EBiz Components
• Mark Collins-Cope & Hubert Matthews on

Layered Architecture
• Philip Eskelin (Author: Component Design

Patterns: A Pattern Language for Component
Based Development),with Kyle Brown & Nat
Pryce on Component Distribution Patterns

ObjectiveView Issue #5 – Focus on Use Cases
• Interview with Ivar Jacobson
• Clemens Syperski (Author: Component Software)

on Components vs. Objects
• Ralph Johnson (Author: Design Patterns) on

Dynamic Object Model Architectures
• Keiron McCammon on e-Business Architectures
• Doug Rosenberg (Author: Use Case Driven

Modeling with UML) and Kendall Scott (Co-

author: UML Distilled) with "Goldilocks and the
Three Software Processes"

 ObjectiveView Issue #4 – Focus on XML
• Richard Vaughan with an Introduction to XML for

Developers
• Author Jason Garbis on Designing Distributed

Object Applications
• Author Jan Bosch on Software Product Lines and

Architectures
• Why is UML topsy turvy? by Hubert Matthews and

Mark Collins-Cope
• Author Brian Hendersen-Sellers describes the

OPEN Process
• In-depth technical interview with author Robert C.

Martin on eXtreme Programming

ObjectiveView Issue #3 – Focus on XP
• Yonat Sharon summarises Kent Beck's Extreme

Programming Process...
• Authors Kendal Scott and Doug Rosenberg put

the counter-case to Extreme Programming...
• Paul Crerand of BEA with a detailed technical

article on M3 - their Object Transaction Monitor
• Brent Carlson of IBM discusses the use of Design

Patterns in SanFransiso
• Author Robert C. Martin with An Introduction to

UML Use Cases...

ObjectiveView Issue #2
• Author Thomas Mowbray gives an Introduction to

CORBA.
• Author Robert C. Martin on the Open-Closed

principle of OO design.
• Anne Thomas (Patricia Seybold Group) on

Noblenet Nouveau - ORB/COM/RPC
interoperability tool.

• Keiran McCannon of Versant with an in depth
article on the case for the OODBMS (vs. RDBMS)

ObjectiveView Issue #1
• Structuring Large OO Projects - Avoiding the

Pitfalls
• Object Management Group Analysis by the UK's

OMG Representative
• Object Oriented Design Tips

Page 4 of 57

for back issues visit http://www.objectiveviewmagazine.com/

http://www.objectiveviewmagazine.com/
http://www.objectiveviewmagazine.com/
http://www.objectiveviewmagazine.com/

objectiveview – www.objectiveviewmagazine.com for back issues

Page 5 of 57

http://bcs-spa.org/conferences.html

http://bcs-spa.org/conferences.html�
http://bcs-spa.org/conferences.html

objectiveview – www.objectiveviewmagazine.com for back issues

Interview with Kent Beck

Mark Collins-Cope talks to eXtreme Programming creator
Kent Beck.

XP
Mark: Thanks for agreeing to talk to
ObjectiveView. Obviously no interview with
Kent Beck would be complete without

some discussion of XP. So let’s start there. Where did the
ideas behind XP come from?

Kent: Many different sources: my
experience with development,
eclectic reading, and talking with
other developers.

Mark: Why did you add “respect”
as a value to XP?

Kent: The big shift between the first and second editions
of XP Explained is in tone and perspective. The second
edition acknowledges that many kinds of people need to
be involved to create value with software. Each of these
people have intrinsic worth as human beings, even as
they contribute differently to the software.

Acknowledging the worth of everyone makes for better
work and better software. It’s easier to say than practice
for me, after most of a lifetime spent believing
programmers were the chosen ones, but it works when I
do it.

Mark: “XP matches observations of programmers in the
wild” is a very amusing phrase – where did it come from?
Is there a danger here that we pander to programmer
wishes rather than customer needs? What differentiates
work from pleasure is, after all, that work is doing
something for someone else.

Kent: I can’t provide you with a source as I heard the
phrase third-hand. The needs of the individual people on
a project do affect the success of the project. Respecting
each other’s needs, roles and expertise allows for the
maximum contribution from each
participant. I don’t think the
distinction between work and
pleasure is binary. I think what
differentiates work from pleasure
is my attitude toward the task at
hand. I find some hard work satisfying. I get pleasure
from working on JUnit, which is both work done for
someone else and a form of service.

Mark: XP certainly became very popular in a fairly short
period of time. Did you have a pro-active “marketing”
campaign for it – perhaps including a series of must-do’s
before releasing ito to the wider world. Or was it just “the
right thing at the right-time”?

Kent: Timing is clearly a big part of any
bonfire success, but I think there is a lot
of philosophical and practical content in
XP. I follow a similar process with any
new idea—I try it myself, then I talk to a few people about
it, then I talk about it publicly and pay attention to how
larger groups of people use it. There was no marketing
campaign. In fact, I just talked with people I met then

wrote a book about what I had
been saying in those
conversations.

Mark: When you visit projects
using XP, how often are they
using all the twelve practises,

and if not all, which are most often dropped? Does
dropping some practises cause problems?

“… there are many agendas at
work in UML besides creating
more value with software…”

Kent: Every project does things differently. I think the most
difficult practices to apply are those that require a change
in personal beliefs. Which practices are difficult are
different from person to person and from culture to
culture.

Mark: Is there one practise in particular that when omitted,
causes most problems?

Kent: I don’t think that it is the omission or commission of
practices that makes the biggest difference. I think the
presence or absence of respect is the biggest
differentiator on software projects. Unfortunately, many
developers go their whole careers without accountability
for acting with respect for others and themselves. With
respect, you can work out the right practices together for
the situation. Without it, pairing or not pairing, testing first
or not testing don’t really matter.

Mark: If there was one thing you’d have done different
with XP, what would it be?

Kent: I would have involved my
partner, Cynthia Andres,
sooner.

Mark: In your book XP
Explained you say the cost of

change curve has flattened out from the exponential rises
reported many years ago when using a waterfall process.
Do you really believe this – and if so, why?

Kent: My experience is that the cost curve for adding
functionality can be essentially flat. Defects are certainly
much more costly to fix later rather than earlier. I think
flattened cost curve for functionality results from a
combination of better techniques, better tools, and more
CPU cycles to run tests and automate refactoring.

Page 6 of 57

“ … civil conflict is in short
supply in our profession …”

http://www.amazon.com/s/ref=nb_ss_gw/104-6202684-0357547?url=search-alias%3Daps&field-keywords=extreme+programming+explained&Go.x=0&Go.y=0&Go=Go�

objectiveview – www.objectiveviewmagazine.com for back issues

http://www.objectiveviewmagazine.com/

Page 7 of 57

http://www.objectiveviewmagazine.com/�
http://www.objectiveviewmagazine.com/

objectiveview – www.objectiveviewmagazine.com for back issues

Mark: You also say that estimating, in the context of fixed
price development, should be based on experience – of
similar systems.

Kent: Distributing risk in a business relationship is often a
complicated negotiation. The problem I see with fixed-
price/fixed-scope contracts is that they appear to shift the
risk of non-performance to the supplier, but they don’t in
reality. If the supplier fails to deliver, the customer still
doesn’t have the software they need. I prefer the style of
contracts used in the lean manufacturing world, where
risks and rewards are explicitly shared. This gives both
parties good economic reasons to work in their mutual
best interest.

Mark: Refactoring is obviously
key to XP – but the need to
refactor is important in any
iterative and incremental project – would you agree?

Kent: Almost all projects are iterative and incremental,
looked at from the scale of decades. And yes, I think the
ability to continually improve the design of a system based
on experience is valuable. It reduces overall project costs,
extends the working life of the system, and creates
options for taking the system in new directions.

Mark: Do you not think that by focusing on a bit more up
front design we could reduce the amount of refactoring
necessary in a particular increment?

Kent: If you can correctly predict the eventual design of
the system, then you can reduce the amount of
refactoring. At one point in my career I explicitly chose to
shorten my “design horizon” to two years, then one year,
then one quarter, then a month, a week, a day, and finally
the next test case. At each stage I developed with less
stress, less over-engineering, better design, easier
testing, and overall higher productivity. I discovered that
my predictions were wrong enough of the time that
designing incrementally was cheaper overall. Design time
doesn’t go away when working in this style, it just gets
spread out across the project.

Mark: So you’ve tried different “windows of design look-
ahead” What do you see as the strengths and
weaknesses of differing look-ahead periods? And how do
you see the impact of window of look-ahead on, for
example, the amount of refactoring required?

Kent: There are issues in software development that
require a long view: people’s growth, customer
relationships (including business models), organizational
values, and in some cases technology. Other questions
can be handled more effectively with a shorter view,
because they change more quickly.

Mark: Should “window of look-ahead” be linked to risk
factors – e.g. new to a programming language = smaller
window of look-ahead, new domain = smaller window of
look-ahead, etc.

Kent:. I think that people evaluate at all levels all the time.
Decisions are made based on instincts that balance both
long and short term perspectives. Each individual’s mix is
different and that is what makes concensus more difficult.
It makes sense that in riskier choices should be
reevaluated more frequently. The minute-by-minute
rhythm of TDD, the hour-by-hour rhythm of pair
programming, the daily rhythm of team development, the
weekly rhythm of delivering new deployable functionality
all provide a good basis for development. It is important
that the discussion of the options not outweigh the value
of those options. The discussion necessary to decide that
this iteration should be two weeks instead of one can
easily cost more than the gains realized by this micro-
optimization.

Mark: Historically speaking I
think its true to say that testing

was always the last activity an average developer wanted
to do – and yet here we have an integral testing process
that seems to have been taken on board by developers.
How is that?

Kent: I think the key was to find a style of testing that
provides mutual benefit. As a programmer, I write tests
partly because they contribute to my work. Also, I think a
lot of testing was presented to programmers in a shaming
way, “You know, if you were really conscientious you
would test better.”

Mark: A lot of TDD tutorials say develop software one test
at a time. Can this process not be optimised by
developing software for multiple tests at one time?

Kent: What often happens to me when I write multiple
tests is that in making the first one work, I realize that the
API is wrong and I have to go change all the tests. I start
with an outline of all the test I want to write, but I actually
write them and make them work one at a time. Writing
multiple tests before making any of them work is a micro-
optimization that leads to macro de-optimization.

Mark: Should software be designed with testability in
mind?

Kent: Software should be designed to serve a number of
purposes simultaneously: correct execution, future
enhancement, ease of understanding, reuse, and
testability. Improving coupling and cohesion as described
25 years ago by Yourdon and Constantine results in
software that better serves all of these purposes.

Mark: Extreme Programming Refactored - what did you
think of this book? It's unusual for a book to be written
against something, so why against XP?
Kent: I didn’t learn anything about software development
from this book. You would need to ask the authors why
they wrote it.

Mark: Did you know that the origin of stand-up meetings is
attributed to Queen Victoria and her meetings with the
Privy Council in the UK – she apparently didn’t like to
hang around too long!

Page 8 of 57

“ … there is a software crisis …”

http://www.softwarereality.com/ExtremeProgrammingRefactored.jsp

objectiveview – www.objectiveviewmagazine.com for back issues

Kent: I didn’t know that ☺!

Agile Development
Mark: Leaving aside XP, which of the agile approaches is
your favourite and why?

Kent: My favorite is the Toyota Production System as
described by Taiichi Ohno in his book of the same name. I
appreciate that he derives his methods from first
principles and that he describes his techniques with vivid
metaphors. He clearly separates the issues that need
long-term planning, like capacity planning, from those that
need daily planning, like planning tomorrow’s production.

Mark: Do you see a parallel with software in terms of
planning in the appropriate detail/timeframe?

Kent: Absolutely. Planning should work on the shortest
possible timeframe that makes sense, and the
organization should actively work to reduce the
timeframes that make sense. For example, if customers
won’t accept a release more often than once a year, find
out why and work to improve development and the overal
relationship so the customers are ready for more-frequent
changes.

Mark: Agile development puts,
quite rightly in my opinion, a
strong emphasis on people. In
the early days I was quite
surprised to see many well-
known independents who'd
previously been writing on
technical subjects suddenly
turning their attention to man-
management, people interaction
and related topics. There's a wealth of general (non
software development) literature and gurus out there who
talk about getting the right team, empowering individuals,
taking risks, etc. that can be applied to software
development as much as any team based human
endevour. Shouldn't software developers use these
resources? And why did this emphasis arise - is our
industry coming of age? Or is it that the well-known
independents have come of age ☺?

Kent: I have the distinct advantage of having a partner
whose background is in psychology. None of the
psychological or sociological material programmers are
talking about is new (and much of it is badly
misinterpreted from the original work). As for the “well-
known independents coming of age”, I know that I am
learning continuously.

Mark: But is there a uniqueness about software
development that means we in our industry should
develop our own body of people knowledge here? Is there
something special about the people side of it?

Kent: I don’t think that the nature of the work is socially
unique. Programmers have historically started out with
lower levels of social skills than some other professions,

but I don’t think that is because typing code into a
machine requires that condition. In fact the younger
generation of programmers seem to be much more in
tune with their peers socially than my generation was. By
working on people skills, programmers can improve their
work interactions and thus their effectiveness. The myth
that programmers are a “breed apart” has been used to
justify belligerence, disrespect, and a lack of
accountability. From my own experience, my life got better
when I stopped acting like other people should treat me
as if I was special and starting taking responsibility for
myself.

Mark: That feedback (on the software development
process) is vital seems to me to be one of the key
message of agile development. Would you agree with
that?

Kent: Yes. One school of thought says that to make the
world safe you have to be able to predict perfectly. Part of
the message of XP is that safety lies in getting good at
listening and responding. Listening and responding are
both skills that can be learned.

Mark: How about feedback in terms of working software?

Kent: I see two constraints on
getting feedback from working
software. Getting feedback
from real use is extremely
valuable, and worth
restructuring a product plan to
encourage. However, it is not
an end in itself. The software
should create some value for
customers first. Then when
they use it you have a chance

to build a relationship. It takes careful listening and
creative planning to find the kernel of value with a
customer and deliver it quickly.

UML and Modelling
Mark: It seems to me that some people like visual
modelling, and some don’t. Do you (personally) think
visual modelling is useful? How do you think about
software, if not visually?

Kent: I think about software visually. I draw diagrams daily
while programming. I wrote and sold a tool, the Object
Explorer, that let people draw diagrams from running
code, and transformed that into Spider for Eclipse. What I
object to is diagrams being used from fear, as a way to
avoid feedback.

Mark: What do you think of UML?

Kent: I think there are many agendas at work in UML
besides creating more value with software.

Page 9 of 57

“… The same topic on a list
populated by geeks would end
up in rancor and chaos. By the

time it was over, someone
would definitely call someone a

Nazi….”

objectiveview – www.objectiveviewmagazine.com for back issues

Long time in software development!
Mark: You’ve been developing software for quite a while
now. Do you still get the same buzz out of it? In what
ways has your approach to software development
changed over the years? What, for you, is exciting at the
moment in this field?

Kent: About six months ago I had a great programming
experience that reminded me how much I enjoy the act of
programming. I have since been refocusing my business
so I can spend more time just plain programming. One
thing that I have changed is that I used to work very hard
to get my ideas. I’m finally getting confidence in my ability
to come up with ideas, so I don’t get so agitated. I find that
I get better ideas faster this way. What is exciting at the
moment is the proliferation of new languages. Java
seemed like it was going to be the new PL/I, and I
suppose now it is. This has created space for new
languages with interesting features.

Mark: “The software crisis” is a term that pops up every
now and then. Is there a software crisis? If so, what
should we do about it? Do you think that problems in
software development projects are often caused by
customer’s lack of understanding of what is going on –
unless you are prepared to look at source code (or
perhaps other models) the realities and constraints of
software development are not exactly visible – unlike, say,
building a building - where at least some of the rules of
the game are clearly visible as building progresses.

Kent: I think there is a software crisis, in that as a
community we are so far under-performing compared to
our potential. I lay responsibility for this squarely at the
feet of the geeks. Until we offer the same level of
accountability and responsibility as, for example, sales
people, we have no right to expect to be treated as
businesslike partners. Part of this is getting off the
martyr/wizard pendulum and reaching out to people with
different perspectives.

Industry Fads or Ideas of Real Benefit
Mark: Our industry seems to home in on certain topics
every so often, and these are - not infrequently -
presented as the silver bullet that will solve all our
problems. Here's a few that come to mind from the last 20
odd years: SOA, Agile, CBD, 4GLs, Structured
Programming, OO programming, re-use, etc. How do you
view these?

Kent: Two things that are clear to me are that software
development has made a lot of progress in the past half
century and that it is nowhere near its potential. When we
as a community try to pass responsibility off to others, we
don’t make progress. Some of the fads you mention seem
that way to me. When we increase our accountability and
transparency,add to our ability to build and maintain
strong relationships with non-geeks, then we improve the
state of our art.

Mark: some of the debates that go on in our industry get
quite vitriolic - and very negative. Take Ken Pugh's book,
Prefactoring. Despite Ken apparently being on-side for
agile development, some of the comments on Amazon
were very negative and quite frankly nasty - apparently
because Ken dared to say that it might be okay to think
about code structure before writing it! How do you view
these type of things. Should we be able to discuss these
things without it getting personal?

Kent: Ken is not the first person to receive nasty, personal
comments about his writings. I think civil conflict is in short
supply in our profession. Effective professionals in other
fields are capable of thoughtful disagreement. I can think
of no valid reason for us to behave any differently. We
have used our genius/wizard status to excuse ourselves
from many of the social graces for a long time. This
attitude is not serving us well.

A homeschooling mailing list my partner reads recently
had a debate about creationism vs. evolution. What was
remarkable to me was how clearly everyone spoke. They
were confident in their own positions, stated them clearly,
and listened carefully to other people’s positions. The
same topic on a list populated by geeks would end up in
rancor and chaos. By the time it was over, someone
would definitely call someone a Nazi. I think this is
because we are not, by and large, comfortable with
ourselves. We spend our time maintaining the illusion
either that we are horrible or wonderful, and anyone who
seems to threaten the illusion is met with aggression.

The experience of witnessing an impassioned-and-civil
discussion and wishing for the same sort of discourse
myself inspired me to give a talk entitled Ease at Work
(http://www.agitar.com/downloads/20060516-webinar_-
_lunch_with_kent_beck.html). I got emotional during the
talk because I want that ease so much. The follow-up
comments have been very interesting. For instance,
Sarah Allen said she thought the pendulum
(http://www.ultrasaurus.com/sarahblog/archives/000274.html) as a woman-only
thing, because she’d only ever seen men in their heroic
phase. I think that we have a lot of room for growth in the
area of constructive rhetoric.

Mark: Regarding “we are horrible or wonderful” – why is
that? Is is part of our collective personality? Is because
our industry is young? Or why?

Kent: I think that somewhere along the line we stopped
listening to feedback. The “horrible/wonderful” pendulum
is my own fear in the absence of knowledge of the reality
of my situation. I think everyone has to find and maintain
an accurate self-image. Geeks seem to have a hard time
with this. We spend so much more time practicing relating
to machines instead of people. The best way I know to get
a balanced self image is to interact with a wide variety of
people, but it’s a conscious effort to do so.

Mark: Kent, thank you very much for your time.
Kent: You’re welcome.

Page 10 of 57

http://www.agitar.com/downloads/20060516-webinar_-_lunch_with_kent_beck.html
http://www.agitar.com/downloads/20060516-webinar_-_lunch_with_kent_beck.html
http://127.0.0.1:4664/redir?url=http%3A%2F%2Fwww%2Eultrasaurus%2Ecom%2Fsarahblog%2Farchives%2F000274%2Ehtml&src=7&s=HAkNUB9DwzcZ-7xQqiVmzH02OU0

objectiveview – www.objectiveviewmagazine.com for back issues

Opinion • Matt Stephens • Ruby - I Love You (Not)

Issue #9 of ObjectiveView was a sort of
Ruby Special: lots of articles devoted
to the wonder that is Ruby, and Ruby
on Rails. When a journal that is meant
to take an objective view suddenly
goes all misty-eyed on us, it’s a
warning signal that something might be
up. Either Ruby really is the “wonder

drug” of programming languages which will cure all our
development ailments; or the Ruby hype machine has
finally gone into overdrive.

But dig a little deeper and you’ll quickly notice that it isn’t
being used on very many projects at all (as I’ll discuss
shortly). There’s also a growing cynicism regarding
Ruby’s applicability on “serious” business projects. [1]

What’s Good About Ruby?
First, the good things. Beneath all the hype [2], there’s a
lovely scripting language; and Ruby on Rails’ almost rabid
use of “sensible defaults” means that initially there’s very
little configuration to be done for your new web
application. As long as your app falls inside the path most
travelled, you’ll find that, at first, you make lots of progress
quite quickly. For many people this will be enough –
especially for prospective converts evaluating Ruby.

Its syntax is nice, and the programs you end up writing
tend to be quite clean and concise compared with their
Java equivalent. Put simply, it’s fun to write Ruby
programs.

In Ruby, everything is an object, including numbers,
Booleans, even nil. And you can extend existing objects at
run-time. So it’s perfectly legal to define a new message
on ‘Integer’, say, and then call the message on a numeric
literal, as in:
 puts 5.factorial

(Pause for dramatic effect, while Java and C#
programmers everywhere silently lay down their tools and
realise how horribly unproductive they’ve been all this
time).

But the jury – the objective jury, that is – is still out on
whether Ruby is suitable for medium- or large-scale
enterprise projects.

Ruby on Real Projects
With all the hype surrounding Ruby, it’s noticeable that it
hasn’t exactly swept through the industry in the way that
Java did a decade ago. It’s swept through the
blogosphere, but that doesn’t equate to usage on real-
world commercial projects.

A quick search on Jobserve.com in the UK revealed that
3,235 Java jobs had been posted in the last 7 days. And

the number of Ruby positions that desperately needed
filling? 26. [3]

In the City of London, investment banks and their ilk
appear to have rediscovered Java, and currently the
demand for Swing developers is at an unprecedented
high. In the cosmic scheme of things that isn’t surprising.
Java is a mature language and platform; and desktop
Java has come along in leaps and bounds. It’s geared
towards real-world pragmatism. This is why the language
includes primitive types (which aren’t objects). This design
decision is sometimes derided by object purists, but it’s a
pragmatic concession to the real world: the need to get
the job done, not to slow your whole system down in the
name of design correctness.

Contrast this with Ruby’s pure approach to OO, described
earlier. The downside is performance (admittedly an issue
that also detracted from Java in its early days). There are
some benchmarks available, e.g. [4] shows that Java’s “-
server” VM is significantly faster (although Ruby
consumes less memory).

Limitations
A pretty major limitation – and it’s a difficult one to solve
for any dynamic language – is that Ruby lacks a decent
IDE, with modern time-savers such as code completion
and built-in API documentation. I’ve seen Ruby die-hards
argue that you don’t need an IDE with good refactoring
support (etc), because you’ll write less code and it’ll be
purer. But frankly, that just doesn’t wash. Big projects with
groups of developers working together need a strong IDE,
plain and simple.

Ruby has patchy Unicode support at best (it’s especially
problematic with Ruby on Rails [5]). This makes Rails
suitable for websites about a programmer’s pet cat, but
not for high-end sites with stringent I18N requirements.

The need to invent a new language to overcome the
(fixable) shortcomings of a mature, thriving platform like
Java is like demolishing your house because you don’t
like the style of wallpaper. When replacing anything, it’s
worth asking: what problem am I solving? Is it worth the
effort? When Java came along, there was no language as
strong. There was C++ but it didn’t have all the APIs, the
memory management, the networking etc. Now, after
many years in relative obscurity, Ruby hops onto the hype
radar, and Java is 10+ years strong, solid and trusted.
Where’s the benefit for all the hassle of changing
language?

Another issue that I see with Ruby – and it’s the same
uncomfortable danger that hangs over the extreme
programming/emergent design crowd – is that Ruby’s
syntactical cleverness encourages programmers to write
“clever” code: code that’s more about itself and about

Page 11 of 57

http://www.objectiveviewmagazine.com/
http://jobserve.com/

objectiveview – www.objectiveviewmagazine.com for back issues

technical minutiae and dynamic design patterns than
about the business problems that it’s meant to be
addressing.

Ruby proponents seem to measure maintainability in
program size: the smaller the program, the “cleaner” and
more maintainable it is. If maintainability was really
achieved by making the code more compact, we would all
be writing our enterprise systems in Perl.

You Just Can’t Get the Staff
Very much a “chicken and the egg” problem is that the
critical mass of developers doesn’t exist in the
marketplace. If you’re choosing a programming
language/platform for your next project, you’ll want to go
with something for which you’ll have no problem finding
experienced staff. Unfortunately, that eliminates Ruby
from the contest straightaway.

For all its purported simplicity and elegance, the language
requires advanced OO knowledge. If there are no Ruby
programmers available, you’ll have to train some up: so
their first exposure to this mysterious new scripting
language could be trying to debug the in-house guru’s
closures, mixins, loop abstractions, and dynamic dispatch
constructs. The commonality of such advanced features in
the language scores highly against it when you’re
recruiting and can’t find enough coders with prior Ruby
experience.

Conclusion
Despite the hype, Ruby faces some serious issues if it’s to
be a genuine contender in the enterprise space. It’s 10x

slower than Java, lacks the libraries, the Unicode support
and doesn’t (yet) have a decent IDE.
Note, that’s the current state: who’s to say how far Ruby
will go in the near future? Sun’s adoption of the core
JRuby developers [6] is an interesting development; it’s
entirely possible that Ruby will find a suitable niche as a
scripting language inside the JVM; following in Rhino’s
footsteps (sorry, hoof-prints). That would be nice.
Whatever happens, I can see Sun incorporating many of
Ruby’s best features into Java, and extending the JVM to
allow for dynamic scripting.

If we start to see the same mature, thriving, extensive
ecosystem of libraries, platforms and experienced
developers (not to mention Unicode support and a decent
IDE) for Ruby as we have both for Java and the .NET
world, then there might be a reason to switch. Until then
though, Java continues to give developers what they ask
for and need on real business projects.

References

Ruby on Rails: http://www.rubyonrails.org/

[1] http://www.redmonk.com/cote/archives/2006/03/mcgovern_comes.html
[2] http://www.ebcvg.com/press.php?id=1761
[3] http://www.jobserve.com/searchresults.aspx?jobType=*&d=7&q=java
 http://www.jobserve.com/searchresults.aspx?jobType=*&d=7&q=Ruby
[4] http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=ruby&lang2=java
[5] http://www.ebcvg.com/press.php?id=1761
[6] http://headius.blogspot.com/2006/09/jruby-steps-into-sun.html
 http://jruby.codehaus.org/

Matt Stephens is a programmer/team leader in Central
London. He co-authored Extreme Programming
Refactored: The Case Against XP (Apress, 2003) with
Doug Rosenberg; and Agile Development with the
ICONIX Process (Apress, 2005) with Doug Rosenberg
and Mark Collins-Cope. Catch Matt on-line at
www.softwarereality.com

Look out for
Kent Beck’s

New Book

Implementation Patterns

Available in the first quarter of 2007.

Page 12 of 57

(ISBN 0321413091)

http://www.rubyonrails.org/
http://www.redmonk.com/cote/archives/2006/03/mcgovern_comes.html
http://www.ebcvg.com/press.php?id=1761
http://www.jobserve.com/searchresults.aspx?jobType=*&d=7&q=java
http://www.jobserve.com/searchresults.aspx?jobType=*&d=7&q=Ruby
http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=ruby&lang2=java
http://www.ebcvg.com/press.php?id=1761
http://headius.blogspot.com/2006/09/jruby-steps-into-sun.html
http://jruby.codehaus.org/
http://www.softwarereality.com/ExtremeProgrammingRefactored.jsp
http://www.softwarereality.com/ExtremeProgrammingRefactored.jsp
http://www.softwarereality.com/AgileDevelopment.jsp
http://www.softwarereality.com/AgileDevelopment.jsp

objectiveview – www.objectiveviewmagazine.com for back issues

C# 2.0 and 3.0
Mike Tauty overviews the features of C# 2.0, and gives us a peek at

what’s coming in version 3.0.

A number of significant
enhancements appear in the second

version of the C# programming language that was
released alongside Visual Studio 2005 in November of
last year. This was the first major revision to the C#
language in a short history which has as its other major
milestones the first release of Visual Studio .NET in 2002
and preview releases stretching back to the year 2000.

At last year’s Professional Developer’s Conference in Los
Angeles, the C# language was the centre of attention
again as possible future enhancements were previewed
including new capabilities that integrate data manipulation
capabilities into the language.

This article provides a brief overview of the new features
that C# version 2.0 introduced before moving on to look at
some of the new features that are found in the current
preview of the version 3.0 language.

C# Version 2.0
The current version of the C# programming language is a
mixture of evolution and revolution with a number of
additions that span from relatively simple enhancements
to the syntax of the language such as static classes
through to new capabilities such as generic types that
exist at both the language level and the underlying .NET
Common Language Runtime level.

This section provides an overview of the main new
features in the language and provides comparison with
the previous version and illustrations of usage.

Static Classes
It is common practise to define classes that have no
instance methods. Consider the .NET Framework class
Math which provides core mathematics functionality
through a series of static methods such as Math.Max,
Math.Truncate, etc.

In the first version of the C# language, there was no
formal mechanism for indicating to the consumer of a
class such as Math that the class did not need to be
instantiated for use but, rather, was purely a collection of
static methods. In order to aid the user of a class such as
Math, the class author would typically mark the default
constructor for the class as private as below in order to
prohibit erroneous attempts to construct an instance of the
Math class:
public class Math
{
 rivate Math() p
 {
 }
 public static double Round(double d)
 {
 ...
 }
}

In version 2.0 of the C# language, this requirement for
static classes which cannot be instantiated is formalised
in the language through the addition of the keyword static
as below:

public static class Math
{
 blic static double Round(double d) pu
 {
 ...
 }
}

The provision for static classes in the language (and in
metadata) assists tools and the compiler enforces the
static nature of the class by emitting errors if the author of
the class attempts to add instance methods or state to the
class or if the consumer of the class attempts to construct
an instance.

Partial Classes
Unlike the C++ language, in version 1.0 of C# the
definition of a class must reside in a single source file.
The relationship of class definitions to source files is
many-to-one.

This restriction is removed in version 2.0 of the language
and a class may now be defined in any number of source
files as long as those source files are made available to
the compiler at the same time (that is, it is not possible to
compile part of a class in one compilation and then
compile additional parts of the class at a later point in
time).

The language introduces a new keyword, partial, as
illustrated in the figure below to indicate that the class
being compiled may also have constituent pieces in other
source files where the definition must also be marked as
partial.

partial class MyClass
{
 public int myInteger;
}
partial class MyClass
{
 public int myOtherInteger;
}

One particularly compelling use for partial classes is in
techniques that use code generation. As an example, in
the case of user interface forms design, the visual aspects
of the form may be generated as one part of a class
definition whilst the second part of that definition may be
manually written by the developer. This technique
provides for elegant separation of the sections of code
that are automatically generated by a tool from those that
are “hand-crafted”.

Page 13 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

Generic Types
The major addition to the .NET Common Language
Runtime for version 2.0 was the addition of the ability to
use build and consume generic types. Generics have a
certain degree of familiarity to the C++ programmer in
that, at first glance, the technology appears similar to what
is offered by C++ templates. However, generics differ
greatly in their capability and implementation.

As a way of introducing generics, consider the typical
implementation of a simple data structure such as a Stack
written with a version 1.0 .NET language such as C#;

public class Stack
{
 public void Push(object o)
 {
 }
 public object Pop()
 {
 return (null);
 }
 private object[] storage;
}

In this sketched implementation of a Stack, the developer
has written a single implementation that takes advantage
of the .NET type system’s ability to treat all data types as
being derived from System.Object. Consequently, this
implementation can be used to provide a general purpose
stack that can store any kind of data – e.g. “Stack of float”,
“Stack of integer”, “Stack of Customer” and so on as
illustrated in the code fragment below which stores
floating point values using this class;

Stack s = new Stack();
s.Push(100.0f);
float f = (float)s.Pop();

Whilst this technique is both valid and common amongst
existing .NET code, there are two potential disadvantages
to this type of implementation.

The first and most obvious problem is that of type safety.
As the Stack implementation deals with all types as
System.Object it is not possible to instantiate a Stack
which only stores a particular data type. Consider the
fragment below which attempts to construct a stack which
only stores integers;

static void Main(string[] args)
{
 Stack stackOnlyForIntegers = new Stack();
 stackOnlyForIntegers.Push(10);
 CallMethod(stackOnlyForIntegers);
 int i = (int)stackOnlyForIntegers.Pop(); // may throw
}

static void CallMethod(Stack stackOnlyForIntegers)
{
 stackOnlyForIntegers.Push("This is a string, sorry");
}

Here, despite the caller’s intention, the callee takes
advantage of the lack of type-safety and misuses the
Stack passed as a parameter in order to add a String.

The caller has to mitigate against the possibility that their
Stack may not always contain data of the right data type

casting the return value from the Pop method and that
cast may fail causing a run time exception.

This lack of type-safety is particularly problematic in
today’s component-oriented development environment
where an application may be constructed from many
different components which are potentially sourced from
different vendors and accorded different levels of trust
within the application’s runtime environment.
Beyond the issue of type-safety, there is also a
performance penalty in treating all members of the .NET
type system as the superclass System.Object and this
performance penalty is inherent in the design of the type
system. Consider the following innocuous looking lines of
code:

int myInteger = 10;
object myObject = myInteger;
int myOtherInteger = (int)myObject;

In this fragment, the value of the Integer variable
myInteger is assigned to a variable of type
System.Object. In the .NET type system, an Integer is a
value-type and is not strictly derived from the
System.Object type. Consequently, the language
compiler performs work to insert instructions which
perform an operation known as boxing the integer. In
short, a real System.Object is allocated from the .NET
managed heap and both the value and the run-time type
of the integer are copied into that heap location which is
then assigned to the variable myObject. Similarly, when
the subsequent assignment is made to the variable
myOtherInteger a process known as unboxing occurs
which involves the type-checking and copying of the value
held in myObject into the integer variable
myOtherInteger.

In version 1.0 of the language, there was little that a
developer who wanted to build a general purpose class
like the example Stack could do to work around these
limitations of type-safety and performance. Version 2.0 of
the language, with its capabilities for generic types,
provides a much better solution.

Consider, the following sketch of a C# 2.0 generic version
of a Stack that has been parameterised;
public class Stack<SOMETYPE>
{
 public void Push(SOMETYPE o)
 {
 }
 public SOMETYPE Pop()
 {
 return (default(SOMETYPE));
 }

 private SOMETYPE[] storage;
}

In this revised version of Stack, generic code has been
written around an (as yet) unspecified type referred to by
a parameter, “SOMETYPE”. When the Stack class is
instantiated, the compiler requires a real data type to be
provided in place of the “SOMETYPE” parameter as in;

Stack<int> intStack = new Stack<int>();
Stack<float> floatStack = new Stack<float>();

Page 14 of 57

Stack<string> stringStack = new Stack<string>();

objectiveview – www.objectiveviewmagazine.com for back issues

Page 15 of 57

http://www.devweek.com/

http://www.devweek.com/�
http://www.devweek.com/

objectiveview – www.objectiveviewmagazine.com for back issues

Logically, the compiler replaces “SOMETYPE” with the
data type provided such that the Stack<int> instantiation
of the generic type is type-safe in that its version of the
Push method will be defined as taking a parameter of
type Integer and its version of the Pop method will return
an Integer. The boxing/unboxing problem has also gone
away as Stack<int> will store an array of Integers directly
rather than converting and storing them an array of
System.Object.

In reality, the compiler takes the generic data type
Stack<SOMETYPE> and, unlike in C++ templates,
compiles this into Common Intermediate Language as a
generic class – that is, the Common Intermediate
Language that .NET languages compile to represents
Stack<SOMETYPE> as a generic type with corresponding
metadata. At compilation time, the compiler can also
check that specialisations such as Stack<int>,
Stack<float> are correctly used.

At run time, as types such as Stack<int> are first
instantiated, the Common Language Runtime takes the
“template” provided by the generic Stack<SOMETYPE>
and produces a version of that class which is specific to
Integer. This process is repeated for all instantiations that
involve parameters from the set of value-types (i.e.
Integer, Decimal, DateTime, etc) but the process is only
performed once for parameters from the set of reference-
types where a performance gain is achieved by effectively
specialising the generic type only for the true base class,
System.Object, of all such types.

It is not only classes that can be constructed generically.
Generics feature in many other aspects of the .NET type
system allowing for generic classes, methods, properties,
fields, delegates, events and interfaces such as the one
illustrated by the following interface which shows how an
interface for a generic dictionary lookup might be
represented;

public interface IKeyValueLookup<KEYTYPE, VALUETYPE>
{
 VALUETYPE LookupKey(KEYTYPE key);
}

Given that generics provide type-safety, there is an
unanswered question as to how generic implementations
are actually constructed. For instance, consider the
following generic method;

public static class Factory<T>
{
 ublic static T Create() p
 {
 return (new T());
 }
}

The class above is not valid and will not compile because
the compiler does not have enough information about the
parameterised type T to allow the call that is made inside
the Create method to the default constructor for T. If the
compiler is to build the class Factory<T> at compilation
time with type-safety then it needs to be provided with a
guarantee that all types used as the parameter T will have
a default constructor.

The C# language names these guarantees constraints
and, for this specific example, T can be constrained to be
from the set of types which provide a default constructor
using the following code:

public static class Factory<T> where T : new()
{
 ublic static T Create() p
 {
 return (new T());
 }
}

The C# compiler now accepts this definition for
Factory<T> and, furthermore, it will ensure that any
instantiations of Factory<T> satisfy the constraint that T
is a type with a default constructor.

Any number of additional constraints can be specified for
parameterised types and a type can be constrained in a
number of different ways including constraining the type of
be a value/reference type, constraining derivation from a
particular base class or implementation of a particular
interface.

As an example, consider a superfluous generic
comparison method such as;

static int CompareTo<T>(T arg1, T arg2) where T : IComparable
{
 return (arg1.CompareTo(arg2));
}

One remaining point around generics is the compiler’s
ability to infer generic types in certain situations. As an
example, consider the following generic method signature;

static T Max<T>(T t1, T t2) where T : IComparable

when making calls to the Max method, it is possible to
explicitly specify the parameterised type or it is also
possible to omit that type making for less verbose, more
clear code as in;

int i = Max(10, 20); // type argument inferred
int j = Max<int>(20, 30);

Nullable Types
As has already been stated in this article, the .NET type
system is clearly partitioned into value-types and
reference-types.

Value-types such as Integers directly store their value
whereas a reference-type is a type-safe pointer to a
location on the .NET managed heap which contains the
value. It is possible to have a reference that does not
currently point to a valid location on the managed heap
and in that case, the reference stores the special value of
null. It is not possible to have “null” value types such as
Integers.

Page 16 of 57

This inability of the .NET type system to naturally model a
“Nullable” value type can cause some friction when it is
being used to manipulate the two most common data
storage models of the day, namely relational databases
and XML storage. Both of these models do present the

objectiveview – www.objectiveviewmagazine.com for back issues

http://www.objectiveviewmagazine.com/

Page 17 of 57

http://www.objectiveviewmagazine.com/�
http://www.objectiveviewmagazine.com/
http://www.objectiveviewmagazine.com/

objectiveview – www.objectiveviewmagazine.com for back issues

ability to model simple data types such as Integers which
permit null values.

With the addition of .NET generic types into the Common
Language Runtime, it is not too difficult to sketch a class
Nullable<T> where T is constrained to be a value type
which would facilitate working with nullable value-types. A
sketch of Nullable is given below;

public class Nullable<T> where T : struct
{
 ublic Nullable() p
 {
 isNull = true;
 }
 public bool HasValue
 {
 get
 {
 return (!isNull);
 }
 }

 // etc...

 private T value;
 private bool isNull;
}

The .NET Framework V2.0 includes such as class
Nullable<T> which can be generally used to write code to
deal with situations where nullable value-types are
needed. Usage of the class Nullable<T> is illustrated
below;
Nullable<int> i = null;
Nullable<int> j = 10 + i; // j is null

int k = j.Value; // Exception
int l = (int)j; // Exeption

int m = 10;

if (j.HasValue) // Explicit test
{
 m = (int)j;
}

Support for Nullable<T> is present throughout the .NET
languages including C#, Visual Basic and C++ but the C#
language has additional syntax to make working with
Nullable<T> more convenient. In C#, the syntax for
Nullable<T> can be shortened to T? and additional short-
cuts exist as illustrated below:

int? i = null;
int? j = 10 + i; // j is null

int k = j.Value; // Exception
int l = (int)j; // Exeption

int m = j ?? 10;

It should be noted that whilst Nullable<T> and the short-
hand syntax are primarly language features making use of
the generic type system there is additional Common
Language Runtime support in version 2.0 to ensure that
scenarios such as the one below function as expected in
that a nullable value type that is “boxed” and “unboxed”
maintains its null status;

int? i = null;
object o = i;
int j = (int)o; // Exception as expected.

Anonymous Methods
.NET introduced the idea of a type-safe function pointer
known as a delegate and makes use of it in order to
formalise the observer pattern for monitoring the state of
an object through the event system.

As an illustration, in .NET code it is possible to define
methods such as Print and PrintMore below;

static void Print()
{
 Console.WriteLine("Hello");
}
static void PrintMore()
{
 Console.WriteLine("World");
}

and then define a delegate type with a signature that
matches these methods;

delegate void Fn();

and, finally, to instantiate an instance of that newly
defined delegate type and use that to refer to both the
Print method and the PrintMore method (chained
together in that order);

Fn f = new Fn(Print);
f += PrintMore;
f();

The invocation of the delegate f() causes the invocation of
the Print method followed by the PrintMore method.
Delegates can refer to both static methods as illustrated
here or to instance methods of particular objects whereby
the delegate then carries with it an implicit this pointer.
As previously mentioned, the delegate forms the basis of
the notion of an event in .NET where one object publishes
an event and other code consumes or handles that event
by adding appropriate delegates to the event’s list. A brief
example is given below;

class Car
{
 public event EventHandler Started;
}
class Program
{
 static void Main(string[] args)
 {
 Car c = new Car();
 c.Started += new EventHandler(OnCarStarted);
 }
 static void OnCarStarted(object sender, EventArgs e)
 {
 Console.WriteLine("Car has started");
 }
}

Where EventHandler is a standard delegate signature
that is used or extended by convention for .NET events.
With version 2.0 of the C# language, this capability of
taking a variable of delegate type is extended in that,
firstly, the compiler has the capability to infer and
generate an instance of the right delegate type which
shortens the previous Main function to;

static void Main(string[] args)
{
 Car c = new Car();

Page 18 of 57

 c.Started += OnCarStarted;

objectiveview – www.objectiveviewmagazine.com for back issues

}

Note that whilst the creation of the EventHandler
delegate is no longer specified, the C# compiler generates
an instance of EventHandler implicity by calling its
constructor with the OnCarStarted method as was done
manually in the earlier code.

The compiler also has the ability to remove from the
developer the burden of having to create a separate
method to be referenced from their delegate variable by
using the delegate keyword as illustrated below to create
an anonymous method;
static void Main(string[] args)
{
 Car c = new Car();

 c.Started += delegate
 {
 Console.WriteLine("car has started");
 };
}

In this sample, the OnCarStarted method has been
replaced with an in-line declaration using the anonymous
method syntax indicated by the delegate keyword. This is
logically equivalent to the previous code in that the
compiler will (at the least) generate a separate method
containing the code within the delegate block and will
then create an instance (in this case) of the
EventHandler delegate type and reference the
anonymous method created from that instance.
Within the anonymous method definition, the arguments
that would have been passed to the event handling
method are still available to the developer using a slightly
more explicit syntax as below;

static void Main(string[] args)
{
 Car c = new Car();

 c.Started += delegate(object sender, EventArgs e)
 {
 Console.WriteLine("car has started");
 Console.WriteLine("Event sent by {0}", sender);
 };
}

And, thus, no power of expression is lost by choosing this
short-hand form of the definition of the delegate function
over the longer variant.

The compiler can perform more code-generation around
anonymous methods than simply generating the method
itself. Consider the following code;

static void Main(string[] args)
{
 Car car = new Car();
 AddEventHandler(car);
}
static void AddEventHandler(Car car)
{
 int x = 10;

 car.Started += delegate
 {
 Console.WriteLine("Car Started");
 Console.WriteLine("Value of x is {0}", x);
 };
}

In this example, the AddEventHandler method is used to
add an anonymous method to the Started event on an
instance of the Car class. The anonymous method that is
added contains code which prints out the value of the
local variable x when the event is fired. Note that it is
almost certain that the stack frame containing the local
variable x will have been collapsed at the time that the
event is fired and, yet, nonetheless the code will succeed.
In this case, the C# compiler is performing more work to
ensure that it captures the local state upon which the
anonymous method depends and makes it available at
the time that the method executes. An examination of the
Common Intermediate Language code that is generated
by the compiler reveals that, for these scenarios, the
compiler generates a class with members to capture the
state required and a method on that class to contain the
code to be executed.

Note that, where the local state is represented by a value-
type then the value can be expected not to have changed
by the time the anonymous method is invoked. However,
for a reference type it is the reference that is copied which
opens the possibility that the underlying object will have
changed by the time the anonymous method is invoked.
Anonymous methods offer interesting possibilities for
simplifying code such as the following short example
which sorts a list of integers in reverse order;

List<int> list = new List<int>();
list.Add(10);
list.Add(20);
list.Add(30);

list.Sort(delegate(int v1, int v2))
{
 return (v2 - v1);
);

Iterators
A standard pattern for enumeration is built into the .NET
Framework through the IEnumerable and IEnumerator
interfaces which are usually used in the C# language
through the foreach statement as illustrated below;

foreach (object element in list)
{
}

The C# compiler looks for the IEnumerable interface on
the list type and, if found, can call the IEnumerable
method, GetEnumerator which it does to produce code
similar to;

IEnumerator enumerator = list.GetEnumerator();
while (enumerator.MoveNext())
{
 object o = enumerator.Current;
}

Page 19 of 57

Whilst this pattern is highly convenient for consuming
enumerable types, it places a burden onto the developer
of such types with the need to implement the
IEnumerable and IEnumerator interfaces each time such
an enumerable class is written. The IEnumerator
interface involves implementing a small state-machine
which stores and advances/reverses the current position
of the enumeration as required.

objectiveview – www.objectiveviewmagazine.com for back issues

The version 2.0 C# compiler has additional capabilities for
the generating of enumerable types using a code
generation technique named iterators to greatly reduce
and simplify the amount of code written. The technique
involves building methods that return one of the variants
of the IEnumerable/IEnumerator interfaces and use the
new yield syntax.

As a starting example, consider the following method;
static IEnumerable Strings
{
 get
 {
 yield return "One";
 yield return "Two";
 yield return "Three";
 }
}
static void Main()
{
 foreach (string s in Strings)
 {
 }
}

The yield return statement indicates to the compiler that
the property in question is builidng an iterator for which
the compiler requires that the property/method in question
must return one of the IEnumerable/IEnumerator
interfaces. The version 2.0 compiler can use the code in
such an iterator property as Strings to generate a class
which implements the IEnumerator interface and can
correctly maintain the necessary state to navigate through
the list of strings.

Whilst the previous snippet is a relatively simple example,
iterators are not restricted to enumerating static
collections but can be used to implement more complex
enumerations. Consider the sketched example below
which shows how a class might offer any number of
iterator-based enumerations and how these can be
consumed by callers;
public class SimpleList<T>
{
 ublic IEnumerable<T>Backwards p
 {
 get
 {
 for (int i = list.Count-1; i >=0 ; i--)
 {
 yield return list[i];
 }
 }
 }
 private List<T>list;
}

public static void Main()
{
 SimpleList<i l List<int>(); nt> ist = new Simple
 foreach (int i in list.Backwards)
 {
 }
}

The full power of iterators comes to light in scenarios
where the building of an implementation of
IEnumerable/IEnumerator is non-trivial such as in the
exposing of a more complex data-structure such as a tree.
The recursive nature of tree-traversal does not easily lend
itself to the IEnumerator interface but the compiler’s
iterator feature greatly simplifies scenarios such as tree-
traversal as the following code sketch illustrates:

class TreeNode<T> : IEnumerable<T>
{
 public IEnumerator<T> GetEnumerator()
 {
 if (this.Left != null)
 {
 oreach (T data in this.Left) f
 {
 yield return data;
 }
 }

 yield return this.Data;

 if (this.Right != null)
 {
 foreach (T data in this.Right)
 {
 yield return data;
 }
 }
 }
 public TreeNode<T> Left ...
 public TreeNode<T> Right ...
 public T Data ...
}

Whilst the full implementation details are not provided for
the sample above, it is hopefully clear that the iterator
approach to tree enumeration is greatly simplified versus
the effort involved in building an implementation of
IEnumerable that would correctly model the state needed
to navigate a tree in a pre-order, in-order or post-order
manner.

C# Version 3.0
At the Professional Developer’s Conference in 2005,
Microsoft made available early preview versions of the C#
3.0 compiler containing a new set of language features
that combine to form the basis of a powerful new
mechanism for extending the language to integrate data
from varied sources.

The features are built on top of the current version 2.0
Common Language Runtime and are implemented in the
C# compiler rather than the underlying runtime.
Collectively, the feature-set is identified by the name LINQ
which stands for Language Interated Query.
This article’s coverage of the version 3.0 features will
attempt to build up from the relatively simple new
language features to present the constituent pieces which
come together to enable LINQ.

It is important to realise that the version 3.0 C# language
is currently in preview and, consequently, features may
change before the technology is made generally available.

Object Initialisers
Consider a simple class such as Person below;

class Person
{
 public string FirstName
 {
 get ...
 set ...
 }
 public string LastName
 {
 get ...
 set ...
 }

Page 20 of 57

}

objectiveview – www.objectiveviewmagazine.com for back issues

Regardless of the constructors that the type has available,
the prototype C# version 3.0 compiler allows the
developer to initialise an instance of the class using an
object initialiser as below:
class Program
{
 static void Main(string[] args)
 {
 Person p = new Person()
 { FirstName="Mike", LastName="Taulty"} ;
 }
}

In this instance, the compiler emits a call to the default
constructor for the Person type followed by the calls to
the two property setters for the FirstName/LastName
properties. That is, the compiler is simply shortening the
manual coding process that the developer would follow in
the absence of an appropriate constructor which provided
parameters for setting the FirstName/LastName values.

Collection Initialisers
In current versions of the C# language, it is legal to
initialise arrays with syntax such as:

int[] integers = { 10, 20, 30 };

The C# V3.0 compiler takes this a stage further and
extends that initialisation syntax to anything that
implements IList which includes data types such as the
generic List<T> allowing for syntax such as;

List<int> l = new List<int>() { 10, 20, 30 };

Once again, the compiler is automating a task that could
easily be performed manually by the developer with more
lines of code. In this instance, the compiler generates the
explicit calls to IList.Add for each of the entries in the
initialisation list.

Implicit Typing
Initially, the implicit typing feature of the prototype version
3.0 C# compiler looks to be one of the more controversial
additions to the language. Below is a snippet that
illustrates its use;

static void Main(string[] args)
{
 var v = 10;
}

In the fragment above, a variable v is declared without
any specific data type being specified for the variable. The
compiler infers the type of the variable from the right hand
side of the assignment.

It is important to realise that in no way is the variable v
loosely or dynamically typed. The variable v is typed as
an Integer which the compiler infers from value being
assigned to the variable. Consequently, the following code
would fail to compile due to trying to assign a floating
point value into the variable which has already been typed
as Integer;

static void Main(string[] args)

{
 var v = 10;
 v = 1.0f;
}

This mechanism for declaring variables works only for a
function’s local (stack-based) variables. That is, class
variables cannot be defined with the var keyword and nor
can parameters to methods. This does not mean that
variables defined with var cannot be passed to methods
as in the fragment below:

static void Main(string[] args)
{
 var v = 10;
 SomeMethod(ref v);
}
static void SomeMethod(ref int i)
{
 i = 20;
}

With this set of limitations on implictly typed variables and
with the arguable amount of obfuscation that such
declarations add to a code-base it is difficult to put
together a rationale for their use until they are matched
with the new version 3.0 feature of Anonymous Types
discussed in the next section.

Anonymous Types
Where version 2.0 of the C# compiler introduced the idea
of the Anonymous Method, version 3.0 takes that further
by introducing the appropriately named anonymous type
which represents a complex data type that is used without
first defining a class to represent it.

Consider the example below which ties together the
previous sections on Implict Typing with that on Object
Initialisers and introduces an anonymous type;

static void Main(string[] args)
{
 var v = new { FirstName= "Mike", LastName= "Taulty" };

 Console.WriteLine(v.FirstName);
 Console.WriteLine(v.LastName);
}

In the fragment above, an instance of a data type with two
properties both of type System.String is generated. This
data type does not have a name visible to the developer
but the compiler can use the object initialiser given and
infer types from it in order to build a data type to
appropriately represent the data structure.

Because the data type does not have a name, it is
impossible to declare a variable (or parameter or member)
of that data type and, consequently, the variable used to
store the value is defined implicitly with the compiler
inferring the right type from the assignment. Thus, implicit
typing comes into its own when working with anonymous
types.

This type of declaration also works for arrays of
anonymous data types which can be initialised in a similar
manner as below;

static void Main(string[] args)
{

Page 21 of 57

 var v = new[] {

objectiveview – www.objectiveviewmagazine.com for back issues

 new {FirstName = "Mike", LastName = "Taulty" },
 new {FirstName = "Fred", LastName = "Smith" }
 };

 foreach (var item in v)
 {
 Console.WriteLine(item.FirstName);
 Console.WriteLine(item.LastName);
 }
}

Note that type-safety is preserved in all cases and only
the data type becomes anonymous. In a list declaration
such as in the previous fragment, data types must remain
consistent across all members of the list in order for the
compiler to generate the anonymous data type.

Extension Methods
C# version 3.0 supports the idea of extending a class by
offering the illusion of appending new methods to any
class at compilation time without modifying the definition
of that class.

As an illustration, consider the simple class Point below
with simple X and Y members;

class Point
{
 public int X;
 public int Y;
}

With the version 3.0 compiler, it is possible to give the
appearance of adding methods to Point by writing an
extension class as below (note the use of the this
keyword on the method Draw to mark it as an extension
method to the type Point and derived types);

static class PointExtension
{
 ublic static void Draw(this Point p) p
 {
 // Take action to draw P.
 }
}

At the point where the compiler comes across an
invocation to a method on the class Point that the class or
its base-classes do not implement, the compiler is
prepared to search for methods that extend Point. In
essence, the compiler searches all in-scope namespaces
in an attempt to locate a matching method such as Draw
on the class PointExtension which extends the class
Point. This allows for code such as;

static void Main(string[] args)
{
 Point p = new Point();
 p.Draw();
}

Note that if two or more matching Draw extension
methods exist in the in-scope namespaces then the
compiler will fail.

Notice also that in the presence of two such methods the
developer can influence which is chosen simply by
altering the in-scope namespaces to select one or the
other.

Consider a more wide-reaching (if largely pointless)
extension method such as the one below which can be
applied to all types as it extends the ultimate base class,
System.Object;

static class ObjectExtension
{
 ublic static string ToStringTwice(this object o) p
 {
 return(o.ToString() + o.ToString());
 }
}

And corresponding code to make use of that extension
method on a class such as the previous Point;

static void Main(string[] args)
{
 Point p = new Point();
 p.ToStringTwice();
}

Extension methods provide a powerful paradigm through
manipulation of the in-scope namespace to control the
methods that will be used to provide extensions to pre-
existing classes.

Lambda Expressions and Lambda
Statements
In their simplest form, Lambda expressions and
statements provide an alternate syntax to the existing
delegate syntax that exists in the C# language today.
As a simple example, consider the following use of
delegate syntax, using the anonymous method additions
from the version 2.0 language;

delegate int AddDelegate(int x, int y);

static void Main(string[] args)
{
 AddDelegate d = delegate(int p, int q) { return p + q; };
 int x = d(20, 30);
}

The equivalent Lambda expression would be written as;

delegate int AddDelegate(int x, int y);

static void Main(string[] args)
{
 AddDelegate d = (int p, int q) => p + q;
 int x = d(20, 30);
}

Where the Lambda expression of “(int p, int q) => p + q”
replaces the anonymous method code written previously.
Similarly, a more complex anonymous method consisting
of a block of statements such as the one below;

delegate void PrintFn(string s);

static void Main(string[] args)
{
 PrintFn f = delegate(string s)
 {
 Console.WriteLine(s);
 Console.WriteLine(s);
 };
}

Has an equivalent Lambda statement in:
PrintFn f = (string s) => {
 Console.WriteLine(s);
 Console.WriteLine(s);

Page 22 of 57

};

objectiveview – www.objectiveviewmagazine.com for back issues

Whilst Lambda expressions provide a neat alternate
syntax to anonymous methods, their real power lies in the
compiler’s ability to perform more type inference than is
performed for anonymous methods. For instance, whilst
the compiler is prepared to infer type parameters for a
Lambda expression that omits them such as:

delegate int AddFn(int x, int y);

static void Main(string[] args)
{
 AddFn f = (x,y) => x + y;
}

Such inference is not performed on the equivalent
anonymous method syntax as below (which gives a
compilation error);

delegate int AddFn(int x, int y);

static void Main(string[] args)
{
 AddFn f = delegate(x, y) { return(x+y); };
}

This capability of the compiler to infer parameter types
and return types for Lambda expressions and statements
becomes very important when combined with anonymous
types as will be discussed in the following section.

The Basis of Language Integrated Query
(LINQ)
Whilst some of the individual pieces of the version 3.0 C#
language appear to be incremental changes when looked
at in isolation, it is very illuminating to examine how these
pieces can be used together to build up very powerful and
flexible capabilities in the language. This section attempts
to introduce such capabilities by putting together the
previous version 3.0 language features.

Consider the following code-snippet using implicit typing
to make reference to an array of anonymous data types;
var v = new[] {
 new { FirstName="Fred", LastName="Jones", Age=55 },
 new { FirstName="Bill", LastName="Smith", Age=66 }
};

Now, in the presence of a simple, generic delegate type
which models any method with a single parameter and a
non-void return value:

delegate U Func<U, T>(T t);

it is possible to sketch a generic method which, as an
example, takes an array of some type and transforms it
into some other type using a supplied conversion routine
as:

static T[] Convert<T, U>
(U[] originalArray, Func<U, T> convertFn)
{
 T[] newArray = new T[originalArray.Length];
 for (int i = 0; i < originalArray.Length; i++)
 {
 newArray[i] = convertFn(originalArray[i]);
 }
 return (newArray);
}

Now, this routine can be extemely useful when combined
with the compiler’s inference capabilities for Lambda
expressions. Consider code which takes the original list
and uses this routine to transform it as below;

var v = new[] {
 new { FirstName="Fred", LastName="Jones", Age=55 },
 new { FirstName="Bill", LastName="Smith", Age=66 }
};

var w = Convert(v,x => new
 { ForeName = x.FirstName, HowOld = x.Age }
);

Taking these two lines separately:
var v = new[] {
 new { FirstName="Fred", LastName="Jones", Age=55 },
 new { FirstName="Bill", LastName="Smith", Age=66 }
};

In this first line, a variable v is declared with implicit typing
causing the compiler to infer the type from the
assignment. The right hand side of the assignment is
initialising an array with elements of an anonymous type.
The compiler can create the anonymous type as a tuple
{FirstName, LastName, Age} of data types {string, string,
int}. The second line of code:

var w = Convert(v,x => new
 { ForeName = x.FirstName, HowOld = x.Age }
);

makes a call to a Convert function passing a lambda
expression. The compiler has visibility of the generic
Convert function with signature:

static T[] Convert<T, U>
 (U[] originalArray, Func<U, T> convertFn)

The compiler can infer from the call the type of the first
generic parameter U[] as being the array of anonymous
types, v. It can then determine the argument type for the
lambda expression (x). The lambda expression provided
returns a new anonymous type which the compiler can
construct and substitute as the type parameter T in the
generic function call.

The result of this call is an array that can be enumerated
using:

foreach (var entry in w)
{
 Console.WriteLine(entry.ForeName);
 Console.WriteLine(entry.HowOld);
}

More than a single line of code can be passed as a
parameter to the Convert routine by making use of a
Lambda statement such as:

var w = Convert(v,x => {
 string concat = string.Format(
 "{0} {1}", x.FirstName + x.LastName);

 return(new { FullName = concat, x.Age});
 }
);
foreach (var entry in w)
{
 Console.WriteLine(entry.FullName);
 Console.WriteLine(entry.Age);

Page 23 of 57

}

objectiveview – www.objectiveviewmagazine.com for back issues

The result of this new Convert function call is an
anonymous type of form { FullName, Age } where
FullName is constructed from the existing anonymous
type that is passed to the routine as a parameter.
With the use of extension methods described earlier in
this document it is possible to give the appearance that
the Convert method exists as a member of a particular
data type as in:

static class Extensions
{
 T[] Convert<T, U>(this U[] originalArray, public static
 Func<U, T> convertFn)
 {
 T[] newArray = new T[originalArray.Length];

 for (int i = 0; i < originalArray.Length; i++)
 {
 newArray[i] = convertFn(originalArray[i]);
 }
 return (newArray);
 }
}

Used by code such as:

var v = new[] {
 new { FirstName="Fred", LastName="Jones", Age=55 },
 new { FirstName="Bill", LastName="Smith", Age=66 }
};

var w = v.Convert(
 x => { string concat = string.Format(
 "{0} {1}", x.FirstName + x.LastName);
 return(new { FullName = concat, x.Age});
 }
);

In the current preview of the LINQ technology, a number
of extension methods which provide for common data
access routines similar in nature to the Convert routine
built above have already been defined and form the basis
of Language Integrated Query. These extension methods
are as below (taken from the C# 3.0 Specification);

delegate R Func<T1,R>(T1 arg1);
delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);
class C
{
 public C<T> Cast<T>();
}
class C<T>
{
 public C<T> Where(Func<T,bool> predicate);
 public C<U> Select<U>(Func<T,U> selector);
 public C<U> SelectMany<U>(Func<T,C<U>> selector);
 public C<V> Join<U,K,V>(C<U> inner, Func<T,K>
 outerKeySelector,Func<U,K>innerKeySelector,
 Func<T,U,V> resultSelector);

 public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K>
 outerKeySelector,
 Func<U,K>innerKeySelector, Func<T,C<U>,V>
 resultSelector);

 public O<T> OrderBy<K>(Func<T,K> keySelector);
 public O<T> OrderByDescending<K>
 (Func<T,K> keySelector);

 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);
 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
 Func<T,E>elementSelector);
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector);
 public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

These extension methods can be used to provide
advanced data querying facilities across different types of
data from the C# language. Consider this example which
takes an array of data and logically performs a query on
that data: “Select Name, Country, Sales from data where
Quantity > 5”:

var data = new[] {
 new { Country="UK",Name="Bob Smith",
 Quantity=10, UnitPrice=20.5m },
 new { Country="UK", Name="Jim Jones",
 Quantity=2, UnitPrice=10.0m },
 new { Country="UK", Name="Jack Williams",
 Quantity=5, UnitPrice=5.75m },
 new { Country="USA", Name="Chuck Jackson ",
 Quantity=8, UnitPrice=18.2m },
 new { Country="USA", Name="Art Arthouse",
 Quantity=6, UnitPrice=9.5m }
};

var meetingCriteria = data.Where(y => y.Quantity > 5);

var selection = meetingCriteria.Select(
 s => {
 decimal d = s.Quantity * s.UnitPrice;
 return new { s.Name, s.Country, Sales = d};
 }
);

var ordered = selection.OrderBy(o => o.Sales);

foreach (var v in ordered)
{
 Console.WriteLine("{0} {1} {2}",
 v.Name, v.Country, v.Sales);
}

Whilst the calls to the Where, Select and OrderBy
methods could all be combined into a single, more
complicated line of code the C# version 3.0 language
takes a large step further by defining new keywords that
map to these extensions methods. Consequently, the
previous code can be rewritten to form a much more
readable example as:

var data = new[] {
 new { Country="UK", Name="Bob Smith",
 Quantity=10, UnitPrice=20.5m },
 new { Country="UK", Name="Jim Jones",
 Quantity=2, UnitPrice=10.0m },
 new { Country="UK", Name="Jack Williams",
 Quantity=5, UnitPrice=5.75m },
 new { Country="USA", Name="Chuck Jackson ",
 Quantity=8, UnitPrice=18.2m },
 new { Country="USA", Name="Art Arthouse",
 Quantity=6, UnitPrice=9.5m }
};

var ordered =
 from d in data
 where d.Quantity > 5
 orderby d.Quantity * d.UnitPrice
 select new { d.Name, d.Country,
 Sales=d.Quantity * d.UnitPrice };

foreach (var v in ordered)
{
 Console.WriteLine("{0} {1} {2}",
 v.Name, v.Country, v.Sales);
}

Page 24 of 57

It is important to realise that the where, orderby, select
keywords here map directly to the extension methods
previously discussed and the range of additions to the C#
language discussed in this article come together to
facilitate these data-like additions to the language.

objectiveview – www.objectiveviewmagazine.com for back issues

The power of LINQ is exhibited by the consistent way in
which both object data and XML data is manipulated and,
whilst not illustrated in this article, DLINQ further widens
this consistent pattern to include relational data sources.

It is also important to note that any set of implementations
of the extension methods Select et al can be brought into
use simply by including the appropriate namespace
containing that set of extension methods and, thus, whilst
the select, where, orderby, groupby keywords form a
fixed set of new language keywords, their meaning can be
altered by the introduction of a new namespace to the
compilation unit using the keywords.

Conclusion
At the point where code becomes boilerplate, work can be
done in the language or the factoring of the code to
increase developer productivity. C# version 2.0 takes a
number of boilerplate code tasks such as the generation
of event handlers or the writing of enumerators and
moves it into the compiler where it belongs. It also,
through the surfacing of the Common Language
Runtime’s new generic data types, adds a whole new
level of expressive power above the version 1.0 language.

Work is ongoing at the time of writing in producing
different sets of extension methods which take the
common keywords and map them across object data as
presented here but also against XML data (XLINQ) and
relational data (DLINQ).

As an example of the power of expressivity offered by
LINQ, consider the following short XML piece of XML
data:

The current preview of Version 3.0 of the language
includes additions that initially appear limited in scope
such as object and collection initialisation and implicit
typing for local variables. In isolation, these are useful
programming constructs but it is only when combined with
the power of Lambda expressions, anonymous types,
compiler inference and extension methods that the full
power of expressivity that the language offers begins to
shine.

<?xml version="1.0" encoding="utf-8" ?>
<books>
 <book title="Hard Times" author="Dickens" price="5.99"/>
 <book title="Great Expectations" author="Dickens"
 price="7.99">
 <publishers>
 <publisher>Penguin</publisher>
 <publisher>Faber</publisher>
 </publishers>
 </book>

 <book title="The Pickwick Papers"
 author="Dickens" price="4.99"/> As has been illustrated, the great promise of the LINQ

pattern and its current specialisations of DLINQ and
XLINQ is to provide a consistent framework that narrows
the gap that the C# programmer faces today between the
constructs of the language in which they work and the
different mechanisms that they use to manipulate data,
whether that be through objects, hierarchical or relational
paradigms.

</books>

XLINQ takes the set of query extensions already
discussed in this document and applies them in a natural
way to XML data without the need for the programmer to
concentrate on specific XML programm interfaces. A
simple example of the power of XLINQ for querying XML
is given below where the query produces a list of
{Title,Author,Price} from the XML document for books with
a price higher than 5.0: References
 See: The C# Specification V2.0, The C# Specification

V3.0, The LINQ Project. XElement element = XElement.Load(@"w:\temp\books.xml");

 var result =
 from c in element.Descendants("book") For an introductory article to C# (V1.0) see issue 7 of

ObjectiveView at http://www.objectiveviewmagazine.com/
 where (decimal)c.Attribute("price") > 5.0m
 select new {
 Title = (string)c.Attribute("title"),
 Author = (string)c.Attribute("author"),

Mike Taulty is a member of the Developer & Platform
Group at Microsoft in the UK. Mike has spent the past five
years working for Microsoft and the previous ten years
working as a professional software developer on a
number of different platforms. You can contact Mike at
http://mtaulty.com.

 Price = (decimal)c.Attribute("price")
 };

foreach (var entry in result)
{
 Console.WriteLine("Book {0}, {1}, {2}",
 entry.Title, entry.Author, entry.Price);
}

Page 25 of 57

http://www.implementingscrum.com/

http://www.implementingscrum.com/�
http://download.microsoft.com/download/8/1/6/81682478-4018-48fe-9e5e-f87a44af3db9/CSharp%202.0%20Specification.doc
http://download.microsoft.com/download/5/8/6/5868081c-68aa-40de-9a45-a3803d8134b8/CSharp_3.0_Specification.doc
http://download.microsoft.com/download/5/8/6/5868081c-68aa-40de-9a45-a3803d8134b8/CSharp_3.0_Specification.doc
http://msdn.microsoft.com/data/ref/linq/
http://www.objectiveviewmagazine.com/
http://mtaulty.com/
http://www.implementingscrum.com/
http://www.implementingscrum.com/

objectiveview – www.objectiveviewmagazine.com for back issues

Conference Report • BCS SPA Conference 2006

It's tempting, when writing articles on conferences, to try and use the
conference name in novel and appealing ways…

… for example, this particular conference used to be run by the
now renamed BCS OOPS (object oriented programming) group.
That made it easy of course, "OOPS - I forgot to tell you that..."
and other such puns would roll off the keyboard with ease - even
if they were pretty unimaginative. BCS SPA, on the other hand,
presents more of a challenge. But let's have a go...

Dictionary.co.uk defines SPA as: “a town where water comes
out of the ground and people come to drink it or lie in it because
they think it will improve their health: - Baden Baden in Germany
and Bath in Britain are two of Europe's famous spa towns.” Not
much to go on there!

Let's try some words that start with SPA:
• SPAnish. SPA is an international conference attended by

delegates from many countries, including Spain!
• SPAcious. The residential (SPA conferences are always

residential) conference facility was certainly spacious, the
rooms were good and there was plenty of space to break
out into groups, discuss topics, etc. Plus a nice chill out
room with Internet access.

• SPArk - Yep. There were lots of bright sparks at the
conference, indeed networking and talking to other industry
experts is one of the main reasons you might want to attend
next year's conference.

Okay, enough frivolity for now. On to the serious business of
explaining what the SPA conferences are all about. SPA is the
British Computer Society's special interest group on Software
Practice Advancement. The group in non-profit making, and that
helps keep the conference price in the very reasonable bracket.
The unique thing about SPA is that all the sessions are
interactive. This means - yes really - that you do actually have a
chance to learn something. I don't know about you - but sitting in
front of endless unidirectional (presenter to attendee)
presentations at most conferences is not the most exciting of
propositions. SPA is different - you get to take part in the
sessions, to ask probing questions as the session continues,
and to test your understanding with the provided exercises or in
work groups. In short attending a SPA conference is more like
attending a set of highly interactive tutorials than attending a
typical conference.

On to the topics covered. There were a wide range of topics
covered - from a hands-on introduction to Ruby and Rails
through Working with Legacy Code, Security Requirements and
Patterns, Agile Process Metrics, on to Aspects and more
common topics related to Java, etc. The biggest challenge I
faced was deciding which of the multiple streams to attend -
there was always more than one of interest.

A couple of sessions caught my eye to the degree I've included
articles about them in this issue of ObjectiveView: Mike Tauty of
Microsoft gave an excellent session on C# 2.0, and more
interestingly C# 3.0 features, Michael Feathers of ObjectMentor
hosted a group on Working with Legacy Code. This is such
a neglected real-life topic - presumably because it's not very
sexy hacking someone else's pile of junk code - that reading
Michael's book should be made compulsory! Two very
informative sessions.

Other notable sessions (for me at least) included "Towards a
precise business language for model driven development" run
by Robert James and Christian Nentwich. At this session they
showed work in progress on an eclipse plug-in that enabled
structured English to be used to specify business rules and
constraints in a manner that was checked against an object
model. You know the sort of thing: "a customer may only have
one account in debit at any particular time." Richard Mitchell is a
leading world expert on modeling, and his session on modeling
with views was good.

Dave Thomas - of Pragmatic Programmer's fame - gave an
excellent keynote on "Angry Monkeys". This is such a great
story I'm going to tell it to you now.

A team of researchers gathered a small group of monkeys in a
room with a ladder in it. They hung bananas at the top of the
ladder and surprise, surprise, monkeys being - well - monkeys,
one of them climbed up the ladder to get them. As he did so, the
researchers hosed down the other monkeys with water. This
exercise was repeated until the monkeys learned not to go up
the ladders.

Now comes the interesting bit. The researchers stopped hosing,
and began to replace the monkeys one by one. The new
monkeys, of course, tried to climb up the ladder, much to the
consternation of the existing monkey who proceeded to jump on
the newbee and beat the shit out of him. The researchers
continued to replace the monkeys until none of the original
hosed monkeys were left.

But still the new monkeys were jumped on when they tried to
climb the ladder - despite the others never having experienced
being hosed down. When interviewed, the monkeys were heard
to say: "well, that's just the way do things around here!" (ok, they
didn't really say that - poetic license please). Hmm… sounds
familiar…

Particular thanks are due to Rachel Davies (Agile Experience)
the Conference Chair and Jane Chandler (University of
Portsmouth) the Programme Chair, and to Andy Moorley
(Truedata Computer Services) for admin. The Conference
Executive were: John Daniels (Syntropy Limited), Matt
Stephenson (Royal & Sun Alliance), Helen Sharp (The Open
University), and Eoin Woods (UBS Investment Bank).

Planning for next year's conference (25-28 March 2007 at
Homerton College in Cambridge) is already well under way. If
you're serious about software development, you really should
attend. It's genuinely rare to get such direct access to the caliber
of world-leading experts who attend this conference.

Be there or be SPAre ...

To find out more about BCS SPA 2007
– visit

Page 26 of 57

http://bcs-spa.org/conferences.html

http://bcs-spa.org/conferences.html

objectiveview – www.objectiveviewmagazine.com for back issues

Opinion • Grady Booch • Service Oriented Architectures

I not so long ago returned from some
work with the SEI in Pittsburgh and then
in Washington, DC where I conducted a
number of customer visits primarily
focusing on service oriented architecture.

Comments about hunting with Dick go
over really, really well with the DC crowd.

My take on the whole SOA scene is a bit edgier than most
that I've seen. Too much of the press about SOA makes it
look like it's the best thing since
punched cards. SOA will
apparently not only transform your
organization and make you more
agile and innovative, but your
teenagers will start talking to you
and you'll become a better lover.
Or a better shot if your name
happens to be Dick. Furthermore, if you follow many of
these pitches, it appears that you can do so with hardly
any pain: just scrape your existing assets, plant services
here, there, and younder, wire them together and
suddenly you'll be virtualized, automatized, and
servicized.

What rubbish.

SOA is, first and foremost, about the A part of the
acronym (architecture). Organizations who already have a
solid approach to architecture will likely do reasonably
well with SOA; organizations who already have a broken
architecture and/or a broken architectural governance
practice will likely fail with SOA and then blame SOA on
all their problems.

If you follow the history of web-centric systems, services
(with a small s) are a very logical progression of web
mechanisms. From a technical perspective, SOA is
nothing revolutionary, it's evolutionary. BTW, in this
context, the concept of an
enterprise service bus can be
easily explained as a very
elegant and simple pattern for
location independence/message
translation.

There are places where SOA is
suitable, and places where it is
not. SOA, from my experience,
is one specific architectural style
appropriate for systems of systems wherein some but not
necessarily all of those systems are already web-centric.
This is an important point: SOA is a useful but insufficient
mechanism for architectural decomposition. Some would
suggest that SOA is all you need. This is seriously wrong.

To that end, services (with a small s) are best suited to
relatively large grained/low frequency interactions rather
than small grained/high frequency interactions. For that
latter situation, other, more traditional, mechanisms of
RPC and/or message passing are better suited.

A serious gap in the current state of the art of services is
that we simply don't know how to specify quality of service
very well at all. It's one thing to wire together services a la
National Instrument's LabView, it's another if there are
quality/performance/reliability/security/dependability

issues for each of those
channels and each of those
ports.

There are also services with
a big S: there is a conceptual
kind of service that is not
manifest as a pure WSDL

service but rather something else. Think of a service as a
port on a system, with that port having a well-defined
interface consisting of a vocabulary of classes, a protocol,
and a particular set of messages and resulting behavior. It
is a good thing that you can conceptualize a system as a
web of services, some of which are Services and some of
which are, well, services.

 “… organizations with a
poor approach to architecture...

will fail and blame SOA
instead…”

Going back to the A part of SOA, the issue then is one of
abstraction, separation of concerns, and all the usual
fundamentals of architecture. I've seen some folks
suggest creating an SOA from the bottom up: look at a
silo, identify the potential services, and publish them, then
weave a system together from them. This is in essence
technology first. In my experience, this is a recipe for
disaster and/or serious over-engineering. You've got to
start with the scenarios/business needs, play those out
against the existing/new systems, zero in on the points of
tangency, and there plan a flag for harvesting a
meaningful service. These styles, and their resulting
costs/benefits, are rarely discussed.

In a couple of weeks, I'm off to
a very different venue, where
I'll be giving a talk at the Game
Developer's Conference in San
Jose. Developing software for
games is big business, and this
community is starting to
discover that the fundamentals
are important: you can't build
an enduring a business just by

hiring bright people, throwing them in a room together,
and hoping that they'll do great things.

Grady Booch is Chief Scientist at IBM Rational Software.

Page 27 of 57

“SOA will apparently not only
transform your organization and

make you more agile and
innovative, but your teenagers

will start talking to you and
you'll become a better lover …”

mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com

objectiveview – www.objectiveviewmagazine.com for back issues

Refactoring Databases: Evolutionary Database Design

Refactoring is a key practise of many agile
methodologies. In an article based on his recent book,

Scott Ambler discusses how to refactor databases.

Martin Fowler [1] describes refactoring
as a disciplined way to restructure code
in small steps. Refactoring enables you

to evolve your code slowly over time and thereby take an
evolutionary (iterative and incremental) approach to
programming. A critical aspect of a refactoring is that it
retains the behavioral semantics of your code. You do not
add functionality when you are refactoring, nor do you
take it away. A refactoring merely improves the design of
your code – nothing more and nothing less.

Similarly, a database refactoring [2, 3] is a simple change
to a database schema that improves its design while
retaining both its behavioral and informational semantics –
in other words, you cannot add new functionality or break
existing functionality, nor can you add new data or change
the meaning of existing data. A database schema
includes both structural aspects, such as table and view
definitions, and functional aspects, such as stored
procedures and triggers. I use the terms code refactoring
to refer to traditional refactoring as described by Martin
Fowler and database refactoring to refer to the refactoring
of database schemas. The process of database
refactoring is the act of making these simple changes to
your database schema.

Informational semantics refers to the meaning of the
information within the database, from the point of view of
the users of that information. Preserving the informational
semantics implies that if you change the values of the
data stored in a column, the clients of that information
should not be affected by the
change – for example, if you
apply the Introduce Common
Format database refactoring
to a character-based phone
number column to transform
data such as (416) 555-1234
and 905.555.1212 into
4165551234 and
9055551212, respectively.
Although the format has
been improved, requiring
simpler code to work with
the data, from a practical
point of view the true
information content has not.
Note that you would still
choose to display phone
numbers in (XXX) XXX-
XXXX format, you just would
not store the information in
that manner.

When preserving behavioral
semantics the goal is to

keep the black-box functionality the
same – any source code that works with
the changed aspects of your database
schema must be reworked to accomplish the same
functionality as before. For example, if you apply
Introduce Calculation Method, you may want to rework
other existing stored procedures to invoke that method
rather than implement the same logic for that calculation.
Overall, your database still implements the same logic,
but now the calculation logic is just in one place.

Why Database Refactoring?
When I speak about database refactoring, and agile
database techniques in general, at conferences I always
like to get the audience thinking outside of the box. I do
this by asking a collection of fairly straightforward
questions and asking for a show of hands. Three of my
favorite questions are “Do any of you work in
organizations where you have perfect data sources?”, “If I
was to ask you to go back to your organization tomorrow
and rename a column in the most important table in your
production database, could you successfully do so in less
than a day?” and “Do you have application development
teams going around your data group and doing the
database design by themselves?”.

The audience will usually laugh at the first question, and
frankly I’ve never seen anyone answer yes to it. I then
ask the follow-up question “Do any of your organizations
have a viable strategy for addressing your data-oriented

problems, other than trying to
make sure it doesn’t get any
worse?” and very rarely does
a hand go up. I then point
out that the strategy of
making sure things don’t get
worse is a losing strategy
because all it takes is one
team to put in yet another
silo database and the
situation has grown. I can
usually hear a pin drop after
stating this. Clearly there are
some serious problems out
there in data land.

Laughter is also usually the
reaction to the second
question, particularly when
there are many people in the
audience working in large
organizations, although I
sometimes there are people
in the audience who answer
in the affirmative. This is

Page 28 of 57

Database Refactoring - Key Points
• Database refactoring is a simple change to

your database schema that improves the
design without changing the semantics.

• Database refactoring is one of several
techniques which enable data professionals to
work in an evolutionary manner.

• Database refactoring enables your to safely fix
existing legacy data sources.

• Due to high-levels of coupling within your data
architecture, you will require a transition period
during which you support both the old and new
schemas.

• You need a database regression test suite in
place to support database refactoring.

• Few data management organizations currently
have coherent strategies for fixing legacy data
or effective database testing in place. Sadly,
few have even thought of the ideas.

• Just as the agile community has raised the bar
for quality in application development, now
we're raising the bar for data management.

http://www.amazon.com/Refactoring-Databases-Evolutionary-Addison-Wesley-Signature/dp/0321293533/sr=1-1/qid=1163609184/ref=pd_bbs_sr_1/104-6202684-0357547?ie=UTF8&s=books�

objectiveview – www.objectiveviewmagazine.com for back issues

Page 29 of 57

http://www.internationaldeveloper.com/�

objectiveview – www.objectiveviewmagazine.com for back issues

either because they work in small organizations with few
applications or database access is encapsulated; in either
case renaming a column is a relatively trivial task. The
people who laugh know that if they were to attempt such a
thing they would break numerous applications. Sadly,
they have no expectation of their data management group
even being able to accomplish a trivial task such as
renaming a column, let alone doing something that could
actually add value to your organization. Although it may
seem that I’m being a bit unfair to the data management
folks out there, as far as I’m concerned if they want to be
in that role then they need to be responsible for actually
fulfilling its responsibilities. Worse yet, as I’ll show you in
this article, it is in fact possible to rename a column in a
production database even when hundreds of
heterogeneous applications are coupled to it.

The third question usually results in the majority of the
audience saying yes, once again particularly so when
there are many people from large organizations. I will
often ask a follow-up question such as “And do the
developers do a less-than-perfect job of the database
design?” which often gets people laughing. After doing
so, I usually see a few smug looks on some faces, so then
I ask “And how many of you work in organizations that
give developers the training that they need to do the
database design properly?” they’re often not smirking
anymore. I suspect that the
reason why developers
avoid working with the data
management groups in their
organizations is that they
find them too difficult to work
with, or simply too slow. At
the Software Development
2006 conference Dagna
Gaythorpe, a well-respected
data professional, started
one of her talks with the joke
“When you walk up to a data
professional, before you can
say a thing they blurt out ‘It’ll
take 3 months, now what’s
the question?’”. Although
this is obviously an
exaggeration, it isn’t too far
off the mark within many
organizations.

The answers to these
questions reveal two
fundamental reasons why
you want to be able to
refactor your databases:

• To repair existing
legacy databases
[Ed’s note: Michael Feather’s “working with legacy
code” is also contained in this issue]. Database
refactoring enables you to safely evolve your
database design in small steps, making it an
important technique for improving the legacy
assets within your organization This is much less
risky than a “big bang” approach where you

rewrite all of your applications and rework your
database schema and release them all into
production at once. It is much better than the
“let’s try not to allow things to get any worse”
strategy currently employed by most data
management groups.

• To support evolutionary software development.
Modern software development processes,
including the Rational Unified Process (RUP),
Extreme Programming (XP), Agile Unified
Process (AUP), Scrum, and Dynamic System
Development Method (DSDM), are all
evolutionary in nature. Craig Larman [4]
summarizes the research evidence, as well as the
overwhelming support among the thought leaders
within the IT community, in support of
evolutionary approaches. Unfortunately, most
data-oriented techniques are serial in nature,
relying on specialists performing relatively narrow
tasks, such as logical data modeling or physical
data modeling. Therein lies the rub – the two
groups need to work together, but both want to do
so in different manners. I believe that data
professionals need to adopt evolutionary
techniques, such as database refactoring, which
enable them to be relevant to modern
development teams. Luckily these techniques

exist [3], and they
work quite well, it is
now up to data
professionals to
choose to adopt
them.

Implementing a
Database
Refactoring
Database refactorings are
conceptually more difficult
than code refactorings: Code
refactorings only need to
maintain behavioral
semantics, whereas
database refactorings must
also maintain informational
semantics. Worse yet,
database refactorings can
become more complicated by
the amount of coupling
resulting from your database
architecture. Coupling is a
measure of the dependence
between two items; the more

highly coupled two things are, the greater the chance that
a change in one will require a change in another.

Some project teams find themselves in a relatively simple,
“single-application database” architecture, and if so they
should consider themselves lucky because database
refactoring is fairly easy in that situation – you merely

Page 30 of 57

Example Database Refactorings
• Add Foreign Key Constraint. Add a foreign key

constraint to an existing table to enforce a
relationship to another table.

• Apply Standard Codes. Apply a standard set of
code values to a single column to ensure that it
conforms to the values of similar columns stored
elsewhere in the database.

• Introduce Calculation Method. Introduce a new
method, typically a stored function, which
implements a calculation that uses data stored
within the database.

• Migrate Method to Database. Rehost existing
application logic in the database.

• Move Column. Migrate a table column, with all of
its data, to another existing table.

• Replace One-To-Many with Associative Table.
Replace a one-to-many association between two
tables with an associative table.

• Replace One-To-Many with Associative Table.
Replace a one-to-many association between two
tables with an associative table.

• Use Official Data Source. Use the official data
source for a given entity, instead of the current one
which you are using.

objectiveview – www.objectiveviewmagazine.com for back issues

change your database schema and update your
application to use the new version of the schema. I never
seem to work in situations like this, but they’re rumored to
exist so I thought I’d mention them.

What is more typical is to have many external programs
interacting with your database, some of which are beyond
the scope of your control. In this situation you cannot
assume that all the external programs will be deployed at
once, and must therefore support a transition period
during which both the old schema and the new schema
are supported in parallel. This situation is more difficult
because the individual applications will have new releases
deployed at different times over the next year and a half.
Figure 1 depicts a UML 2 Activity diagram that overviews
the database refactoring process [3].

Figure 1. The database refactoring process.

To put database refactoring into context, let's step through
a quick example. You are about to implement a new
requirement which involves working with the first names of
customers. You look at the existing database schema for
the Customer table, depicted in Figure 2 , and realize that
the column name isn’t easy to understand. You decide to
apply the Rename Column refactoring to the FName
column to rename it to FirstName so that the database
design is the best one possible which allows you to
implement the new requirement.

Figure 2. The initial database schema for Customer.

Agilists typically work together as a pair; one person
should have application programming skills, the other
database development skills, and ideally both people
have both sets of skills. This pair begins by determining
whether the database schema needs to be refactored.
Perhaps the programmer is mistaken about the need to
evolve the schema, and how best to go about the
refactoring. The refactoring is first developed and tested
within the developer's sandbox. When it is finished, the
changes are promoted into the project-integration
environment, and the system is rebuilt, tested, and fixed
as needed.

To apply the Rename Column refactoring in the
development sandbox, the pair first runs all the tests to
see that they pass. Next, they write a test because they
are taking a Test-Driven Design (TDD) approach [5, 6, 7].
A likely test is to access a value in the FirstName column.

After running the test and seeing it fail, they implement the
actual refactoring. To do this they introduce the
FirstName column and the SynchronizeFirstName trigger
as you see in Figure 3, and the Oracle code to do this
follows. Due to a lack of tooling at the time of this writing,
this code would be captured as a single “change script”.

Figure 3. The database schema during the transition
period.

The trigger is required to keep the values in the columns
synchronized – each external program accessing the
Customer table will at most work with one but not both
columns. At first, all production applications will work with
FName, but over time they will be reworked to access
FirstName instead. There are other options to do this,
such as views or synchronization after the fact, but I find
that triggers work best.

Page 31 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

ALTER TABLE Customer ADD FirstName VARCHAR(40);

COMMENT ON Customer.FirstName ‘Renaming of FName column,
finaldate = November 14 2007’;

COMMENT ON Customer.FName ‘Renamed to FirstName, dropdate =
November 14 2007’;
UPDATE Customer SET FirstName = FName;

CREATE OR REPLACE TRIGGER SynchronizeFirstName
BEFORE INSERT OR UPDATE
ON Customer
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEGIN
 IF INSERTING THEN
 IF :NEW.FirstName IS NULL THEN
 :NEW.FirstName := :NEW.FName;
 END IF;
 IF :NEW.Fname IS NULL THEN
 :NEW.FName := :NEW.FirstName;
 END IF;
 END IF;

 IF UPDATING THEN
 IF NOT(:NEW.FirstName=:OLD.FirstName) THEN
 :NEW.FName:=:NEW.FirstName;
 END IF;
 IF NOT(:NEW.FName=:OLD.FName) THEN
 :NEW.FirstName:=:NEW.FName;
 END IF;
 END IF;
 END;

The FirstName column must be populated with values
from the FName column. The easiest way to do this is to
simply run the following SQL code. This code would be
captured as single script referred to as a “migration
script”.

UPDATE Customer SET FirstName = FName;

You need to run both columns, FName and FirstName, in
parallel during a transition period of sufficient length to
give the development teams time to update and redeploy
all of their applications. This transition period could be
several years in length, depending on the ability of your
project teams to get new releases into production. In this
case we’ve decided that the transition period will run to
November 14, 2007 (roughly 1.5 years in this case).

The pair rerun the test suite and see that the tests now
pass. They then refactor the existing tests, to work with
the FirstName column rather than the FName column.
Once the database refactoring is completed in their
development work environment, the pair promotes their
work into the team’s integration sandbox where they
rebuild and rerun the tests, fixing any problems which they
find. To update the database schema, the pair runs the
appropriate change and migration scripts in the
appropriate order.

This promotion strategy continues into a pre-production
integration testing environment and then eventually into
production. Depending on your need, you could
implement and then deploy the refactoring within a single
day, although more realistically it would be several
months until the next major release of your application

and at that point you would deploy the refactoring along
with any other updates that you’ve made.

After the transition period, you remove the original column
plus the trigger(s), resulting in the final database schema
of Figure 4. The Oracle code to do this is shown below,
which would be captured in a “transistion script”. You
remove these things only after sufficient testing to ensure
that it is safe to do so. At this point, your refactoring is
complete.

Figure 4. The final database schema for Customer.

--On or following Nov 14 2007 DROP TRIGGER
SynchronizeFirstName;ALTER TABLE Customer DROP COLUMN FName;

There is a little bit more to successfully implementing a
database refactoring than what I’ve described. You need
a way to coordinate the refactoring efforts of all the
development teams within your organization, clearly
something that may prove quite difficult. You also need to
get good at deploying refactorings in production, once
again coordinating the efforts of several teams. In
Refactoring Databases [3], my co-author Pramod
Sadalage and I discuss several strategies for doing these
things.

Database Refactoring and Testing
You can have the confidence to change your database
schema only if you can easily validate that the database
still works with your application after the change, and the
only way to do that is to take a TDD-based approach
where you write a test and then you write just enough
code to fulfill the test. You continue in this manner until
the database refactoring has been implemented fully. You
will potentially need to write tests that:
• Test your database schema. You can validate many

aspects of a database schema: Stored procedures
and triggers, referential integrity (RI) rules, view
definitions, default value constraints, and data
invariants [8].

• Test the way your application uses the database
schema. Your database is accessed by one or more
programs, including the application that you are
working on. These programs should be validated just
like any other IT asset within your organization.

Page 32 of 57

• Validate your data migration. Many database
refactorings require you to migrate and sometimes
even cleanse the source data. In our example, we
must copied the data values from FName to
FirstName as part of implementing the refactoring.

objectiveview – www.objectiveviewmagazine.com for back issues

Why Not Just Get it Right to Begin
With?
I am often told by existing data professionals that the real
solution is to model everything up front, and then you
would not need to refactor your database schema.
Although that is an interesting vision, and I have seen it
work in a few rare situations, experience from the past
three decades has shown that this approach does not
seem to be working well in practice for the overall IT
community [Editor’s note: see Ed Yourdon’s retrospective
on Structured Analysis in this issue]. The traditional
approach to data modeling does not reflect the
evolutionary approach of modern methods such as the
RUP and XP, nor does it reflect the fact that business
customers are demanding new features and changes to
existing functionality at an accelerating rate. The old
ways simply aren’t sufficient any more, if they ever were
[11].

I suggest that you take an Agile Model-Driven
Development (AMDD) approach [9, 10], in which you do
some high-level modeling to identify the overall
"landscape" of your system, and then model storm the
details on a just-in-time (JIT) basis. You should take
advantage of the benefits of modeling without suffering
from the costs of over-modeling, over-documentation, and
the resulting bureaucracy of trying to keep too many
artifacts up-to-date and synchronized with one another.
Your application code and your database schema evolve
as your understanding of the problem domain evolves,
and you maintain quality through refactoring both.

AMDD is different than traditional Model Driven
Development (MDD), exemplified by the Object
Management Group (OMG)’s Model Driven Architecture
(MDA) standard (www.omg.org) , in that it doesn’t require
you to create highly-detailed, formal models. Instead,
AMDD is a streamlined approach to development that
reflects agile software development values and principles,
providingway to create artifacts such as physical data
models that are critical to the success of agile DBAs. The
collaborative environment fostered by AMDD promotes
communication and cooperation between everyone
involved on your project. This helps to break down some
of the traditional barriers between groups in your
organization and to motivate all developers to learn and
apply the wide range of artifacts required to create
modern software – there’s more to modeling than data
models.

In Conclusion
Database refactoring is a database implementation
technique, just like code refactoring is an application
implementation technique. You refactor your database
schema to ease additions to it. You often find that you
have to add a new feature to a database, such as a new
column or stored procedure, but the existing design is not
the best one possible to easily support that new feature.
You start by refactoring your database schema to make it
easier to add the feature, and after the refactoring has
been successfully applied, you then add the feature. The

advantage of this approach is that you are slowly, but
constantly, improving the quality of your database design.
This process not only makes your database easier to
understand and use, it also makes it easier to evolve over
time; in other words, you improve your overall
development productivity.

My experience is that data professionals can benefit from
adopting modern evolutionary techniques similar to those
of developers, and that database refactoring is one of
several important skills that data professionals require.
Unfortunately, the data community missed the object
revolution of the 1990s, which means they missed out on
opportunities to learn the evolutionary techniques that
application programmers now take for granted. In many
ways, the data community is also missing out on the agile
revolution, which takes evolutionary development one
step further to make it highly collaborative and
cooperative.

References / Recommended Reading
1. Fowler, M. (1999). Refactoring: Improving the

Design of Existing Code. Menlo Park, California:
Addison Wesley Longman, Inc.

2. Ambler, S.W. (2003). Agile Database Techniques:
Effective Strategies for the Agile Software
Developer. New York: John Wiley & Sons.
http://www.ambysoft.com/books/agileDatabaseTechniques.html

3. Ambler, S.W. and Sadalage, P.J. (2006).
Refactoring Databases: Evolutionary Database
Design. Boston: Addison Wesley.
http://www.ambysoft.com/books/refactoringDatabases.html

4. Larman, C. (2004). Agile and Iterative Development:
A Manager’s Guide. Boston: Addison-Wesley.

5. Astels D. (2003). Test Driven Development: A
Practical Guide. Upper Saddle River, NJ: Prentice
Hall.

6. Beck, K. (2003). Test Driven Development: By
Example. Boston, MA: Addison Wesley.

7. Ambler, S.W. (2004c). Introduction to Test Driven
Development (TDD). http://www.agiledata.org/essays/tdd.html

8. Ambler, S.W. (2006a). A Roadmap for Regression
Testing Relational Databases.
http://www.agiledata.org/essays/databaseTesting.html

9. Ambler, S.W. (2002). Agile Modeling: Best
Practices for the Unified Process and Extreme
Programming. New York: John Wiley & Sons.
http://www.ambysoft.com/books/agileModeling.html

10. Ambler, S.W. Agile Model Driven Development
(AMDD). http://www.agilemodeling.com/essays/amdd.htm

11. The Agile Data Home Page. http://www.agiledata.org/

Page 33 of 57

Scott W. Ambler is an industry-recognized software
process improvement (SPI) expert and is the Practice
Leader Agile Development within IBM’s Methods group.
www-306.ibm.com/software/rational/bios/ambler.html is
his personal home page, and he is the author of several
books and is a senior contributing editor with Dr. Dobb’s
Journal. Material for this article was modified from
Refactoring Databases: Evolutionary database Design by
Scott W. Ambler and Pramod J. Sadalage (Addison
Wesley 2006).

http://www.ambysoft.com/books/agileDatabaseTechniques.html
http://www.ambysoft.com/books/refactoringDatabases.html
http://www.ambysoft.com/books/refactoringDatabases.html
http://www.agiledata.org/essays/tdd.html
http://www.agiledata.org/essays/tdd.html
http://www.agiledata.org/essays/databaseTesting.html
http://www.agiledata.org/essays/databaseTesting.html
http://www.ambysoft.com/books/agileModeling.html
http://www.agilemodeling.com/essays/amdd.htm
http://www.agiledata.org/
http://www.agiledata.org/

objectiveview – www.objectiveviewmagazine.com for back issues

The Object Database Alternative

With an increasing number of Open Source and proprietary Object
Databases becoming available, do they really provide a viable

alternative to relational databases? Rick Grehan tells us why he
believes they are…

When software developers think
"database", they usually think

"relational database". Think further, though, and that's a
bit odd. Most development today is being done in an OO
language (Java, C#, etc.) Moving data between objects
and relational tables requires "translation" code that must
work bidirectionally – extracting object data into SQL
statements, or pulling data from returned tables and
assembling the result into a new object.

Wouldn't it be nice if such translation code were
unnecessary? Wouldn't code be easier to read and
manage if objects could be placed in the database (and
withdrawn from it) wholesale; with no conversion
necessary? After all, the application code works with
objects. Doesn't it make sense to have the database
manipulate objects ... rather than "bits and pieces" of
objects?

Objects In The Database
With the near-universal adoption of object-oriented
languages as the
foundation for new
application development,
interest in object
databases is growing.
While an object database
enjoys several advantages
over a relational database,
its most significant edge is
the simple fact that using
an object database does
not require the developer
to master two different
paradigms: the object
paradigm for the
application, and the
relational paradigm for the
database.

Evidence of the widening
appeal of object databases
can be found in the
numerous commercial and
open-source offerings.
Commercial products
include:

• Versant Corporation

(http://www.versant.co
m/) is the home of the
FastObjects object
database. Formerly

known as Poet, the FastObjects database is available
in Java and .NET versions, and packs a remarkable
punch for its size. (FastObjects has a bigger cousin,
called simple "Object Database" that also provides a
C++ interface.)

• Matisse Corporation (http://www.matisse.com/)
markets a database also named after the French
artist. The Matisse database is described as a "post-
relational" database, which means that the database
is just as comfortable storing and retrieving "native"
objects as it is processing relational SQL statements.

Open-source offerings include:
• Ozone (http://www.ozone-

db.org/frames/home/what.html) is an object-oriented
DBMS implemented in Java whose goal is to allow
developers to create POJOs (plain old Java objects)
and "let them run in a transactional database
environment."

• Prevayler (http://www.prevayler.org/) is a Java
persistence engine that takes the somewhat
unorthodox approach of keeping all objects in RAM.

This manner of object
persistence rests on the
related facts that the cost
of RAM is dropping as its
density rises. Period
'snapshots' back the data
to disk, so the database
can be reconstructed in
case of a crash.

• The Apache
ObjectRelationalBridge
(OJB -
http://db.apache.org/ojb/)
is, strictly speaking, an
object- relational mapping
layer. An application using
OJB sees an object
database, but the back-end
converses with any JDBC-
compliant RDBMS. The
Apache OJB is impressive
in that it supports at least
four object-database APIs.

• db4o
(http://www.db4objects.co
m/) is an object database
available for Java, .NET, or
Mono. It's outstanding
characteristics are its
straightforward API, and
the ease with which it can

Page 34 of 57

Why use an OODBMS

Class schema is
database
schema

With an ODBMS, once you’ve
designed your application’s class
schema, your database schema is
done.

No object-to-
relational
translation code

Because there is no relational
database ‘hiding behind’ the
application, you don’t have to write
code to translate between objects
and relational tables.

Objects are
manipulated as
objects

Objects don’t have to be peeled
apart to be stored, an re-
assembled when retrieved. In
addition (given the proper ODBMS
back-end) object relationships are
automatically reflected in the
database (rather than having to be
mimicked by added tables and
columns).

A single
language
covers all

Many ODBMS packages (e.g.,
db4o, as illustrated in the article)
do not require a separate database
manipulation language, such as
SQL, to describe database
operations. Simply put, the
application is written in one
language.

http://www.versant.com/
http://www.versant.com/
http://www.matisse.com/
http://www.ozone-db.org/frames/home/what.html
http://www.ozone-db.org/frames/home/what.html
http://www.prevayler.org/
http://db.apache.org/ojb/
http://www.db4objects.com/
http://www.db4objects.com/

objectiveview – www.objectiveviewmagazine.com for back issues

be incorporated into an application. We'll be using
db4o later, to demonstrate some of the more
compelling reasons for choosing an object database
over a relational one.

The Relational Situation

With an RDBMS "behind" your application,
queries to the database are typically specified
as SQL strings. These strings express a
different language than the language of the
application. This "passenger language" carries
its own semantics and syntax. And because
the commands are strings, they are untouched
at compile time. They must be parsed and
executed by an SQL engine at runtime.

Furthermore, depending on the structure of
your application, that SQL engine might reside entirely
within your code's process space; which means that its
execution takes place at the expense of CPU cycles that
would be otherwise available to your application. Even if
you employ stored procedures (which execute in the
process space of the database server), your application
must perform some sort of translation to move data
between the world of objects, and the world of database
entities.

We must recognize that there is much good to be said
about relational databases; plenty of fine relational
database systems are available. The RDBMS MySQL is
possibly one of the finest demonstrations that the open-
source world can produce top-quality software on par with
the best commercial offerings. Nevertheless, an
RDBMs is not the only answer for every
database application. As already indicated, your
application incurs overhead – both in terms of
consumed memory and processor cycles – from
the SQL parsing and execution engine. In
addition, you are "sprinkling" your application
with strings of procedural code that are not
syntactically checked at compile-time. As a
result, you won't know about even the smallest
typographical errors until you run the application.

What's worse, you won't know if you have a
semantic error in your database code until you
execute the application and see the results. For
example, if you've written your database code "by hand"
there exists a small -- but not nonexistent -- danger that
you'll put the wrong object member into the wrong
column, or fetch the wrong column into the wrong object
member. Such errors won't manifest themselves until you
witness whatever effects those mistakes cause.

Also, object relationships must typically be modeled via
columns that use foreign keys to reflect object references.
These columns exist for no reason other than to provide a
unique identifier for the row, so that other rows in other
tables (representing other objects) can be "connected".
(See Figure 1 [PICT1.JPG]) And, of course, code must be
written to ensure that object relations are properly

reflected into the database, and that objects drawn from
the database are correctly "wired" according to the
relationships expressed by the foreign keys.

Figure 1. Representing objects in an RDBMS
In this instance, (A) object A references objects B and C. To make these

"connections" visible in a relational database (B), two columns must be
added to TABLE A. Each holds foreign keys that "point" to the rows

corresponding to objects B and C in their respective tables.

Consider, for example, a class whose objects include an
array (or some other collection) as a member. To model
such objects in a relational database requires two tables.
One, the 'parent' table, holds data corresponding to the
non-array fields of the primary object. Another, the 'child'
table, holds data corresponding to the array entries.
Furthermore, each row in the child table must carry a
foreign-key referece that provides the link between parent
and child, so that array members (in the database) can
'know' which parent object they 'belong to.'. (See Figure
2.)

Figure 2. Arrays within Objects
(A) Object A contains an array object (or, possibly a container object

such as ArrayList). (B) To model that in a relational database requires
two tables -- a 'parent' table (Table A) for the parent object, and a 'child'

table (Table A1) for the contents of the array. The unique ID of the
parent object is written into those rows in Table A1 that belong to that

parent.

In summary, classes must be mapped to tables, objects
mapped to rows, and object relationships mapped to
specialized columns. The developer must construct an
elaborate framework so that a relational database can
speak the language of objects, and objects can speak the
language of the relational database. The term "impedance
mismatch" -- borrowed from the world of electronics -- is

Page 35 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

often used to describe this gap between the object and
the relational realms that the developer must bridge.

Object/Relational Databases
Object/relational (O/R) database systems offer a sort of
middle- ground, allowing the developer to create an
object-oriented application with a relational database
"backend". And, in most cases, object/relational database
systems offer some form of "assistance" -- relieving the
developer of at least part of the tedium of building the
translation code we mentioned above.

From the application's perspective, the database holds
objects; from the database's perspective, the application
is using relations. Huddling invisibly between the two is a
translation layer that takes the objects passed in from the
application, and turns them into relational operations for
consumption by the relational database. Relational data
moving through the translation layer in the opposite
direction are converted by the layer into objects for the
application.

Because the translation
layer handles the
conversion work, the
programmer need not deal
with SQL directly. And
many object/relational
database systems can
"talk" to a variety of different relational back-ends,
allowing the developer to select the specific RDBMS that
he or she believes to be the most suitable for the
application.

However, even though the developer doesn't have to
create (and, in most cases, never even sees) the
translation code, that code is still present in the
application -- consuming space and eating CPU cycles.
And the side-effects of the underlying relational database
cannot be completely eliminated. The developer must
somehow describe the object structures and class
relationships to the O/R system, and -- in some cases --
provide guidance to the database as to how objects are to
be stored in the tables. Typically, this specification is
expressed in a schema mapping file.

A sort of reverse-example of such guidance can be seen
in the Apache Torque database project's tutorial. Torque
is a object-to- relational database mapping technology
that requires you to define your database structure, and
from that constructs classes that the Torque "engine" can
shuttle to and from the database tables. An excerpt from a
Torque database schema file looks like this:

<database
 name="bookstore"
 defaultIdMethod="idbroker">

 <table name="publisher" description="Publisher Table">
 <column
 name="publisher_id"
 required="true"
 primaryKey="true"
 type="INTEGER"
 description="Publisher Id"/>
 <column

 name="name"
 required="true"
 type="VARCHAR"
 size="128"
 description="Publisher Name"/>
 </table>
....

This schema file must be passed through a pre-
processing step (automated by the Maven build tool) that
generates four classes for each table. These include
"peer" classes, that carry the logic for manipulating the
corresponding Java objects (that hold the actual data).
For example, to insert a "publisher" object in the
database, you would call something like:

 PublisherPeer.doInsert(pubObject);

where pubObject is an instantiated Publisher object. (The
Publisher class is also a generated class.)

In short, Torque takes a direct approach to mapping
classes to tables, and instantiated objects to rows within
those tables. You describe the table structure, and Torque
builds the source code for the classes for you. Not a

particularly bad idea, but –
as illustrated – the
relational roots can never
be completely hidden.

Life Is Simpler
A database programmer's life becomes a good deal
simpler with a "true" object database; that is, one that
treats objects as, well, objects throughout.

Because an object database manipulates objects
"wholesale", no translation code need be written to move
data between objects in the application and tables in the
relational database. The database and application both
deal with objects in the same form. Hence, there is no
need to embed a separate "database language" in the
application's code, and the developer doesn't have to
learn a programming language other than the
application's. In addition, no database language engine is
required (either in the application's processor space, or on
a separate server) to parse and execute the database
language's commands.

The list of "unnecessaries" goes on: no schema mapping
file is required. In a very real sense, the developer writes
the schema when specifying a class's structure.
Everything that the compiler and runtime needs to know
about an object's structure and its relationship to other
objects is visible in the code. Similarly, all that the
database needs to know about the architecture of
persistent objects is in the definition of those objects'
classes.

An Open-Source Example: db4o
db4o is an open-source object database available in Java
and .NET flavors. It is a "native" object database in
several senses. It runs entirely in the execution

Page 36 of 57

Moving data between objects and
relational tables requires "translation"

code…. Wouldn't it be nice if such
translation code were unnecessary?

objectiveview – www.objectiveviewmagazine.com for back issues

environment of the application. That is, the Java version is
written in Java, and the .NET version is written in C#. A
single library linked to an application is all that is needed
to provide that application with all of db4o's capabilities.
(A version of db4o also exists for development in the
Mono environment.)

In addition, db4o works with unmodified objects. (See
Figure 3.) That is, the developer need do nothing special
to an object to make it "persistent-capable." For example,
some object databases require that persistent object
classes be derived from a persistence-capable base
class. Others require that the classfiles of persistent
classes be passed through a pre-processor. This pre-
processor modifies the classfiles by "injecting" code, so
that, at execution time, objects derived from such classes

inherit the invisibly-added capability of persistence. With
db4o, no additional work is required to make an object
eligible for storage in the database; you simply put it
there.

Figure 3. A Database Of Objects
db4o treats objects as objects. Objects are stored in the database

"wholesale", with their structure and object references "intact". This is in
contrast with a relational database back-end, wherein the application

must disassemble objects to put them in the database, and re-assemble
them to fetch them out.

One of db4o's outstanding features is its uncomplicated
API. For example, suppose you had defined a class called
MyPrinter, with the following structure:

 class MyPrinter {
 public string name;
 public string manufacturer;
 public string model;
 public float cost;
 ...
 }

To store an object to the database, the code looks
something like this:

 db4oDB.set(myPrinterObject);

where db4oDB is an ObjectContainer (an instantiation of
the class that models the database), and myPrinterObject
is a reference to an instance of MyPrinter that will be
stored in the database.

Notice that you don't have to tell db4o anything about the
structure of myPrinterObject. It could be as simple as an
object with only primitive members, referencing no other
objects; or as complex as the "root" of a tree of objects
connected to other objects to an arbitrary depth. (So, if
myPrinterObject referenced another object, say objectB,
then storing myPrinterObject would also store objectB.) In
short, you don't have to craft a schema definition file for
db4o's benefit. The schema is in the class structure itself,
and db4o discovers that structure by navigating object
references via reflection.

Meanwhile, had our object been stored in a
relational database, we might have had to use the
following code (assuming, in this instance, using C#
for .NET, and calling upon the Ole libraries in the
.NET Framework);

. . .
String insstr = “INSERT INTO PrinterTable (name,
manufacturer, model, cost) “ +
 “VALUES (‘“ + myPrinterObject.name + “’, ‘“ +
 myPrinterObject.manufacturer + “’, ‘“ +
 myPrinterObject.model + “’, “ +
 myPrinterObject.cost +”)”;
OleDbCommand insCommand = new OleDbCommand(insstr,
connection);
InsCommand.ExecuteNonQuery();
. . .

Where we have taken the less-than-secure route of
creating our INSERT SQL command string by
simply concatenating strings together. (The
connection object represents the connection to the
database, which the code snippet presumes has
already been opened.) Even had we used binding
variables in our SQL statement, we would still have

had to create a string, and issued calls to bind actual
instance variables to their “markers” in the SQL string.

Deleting an object with db4o is a call of equal simplicity:

 db4oDB.delete(myPrinterObject);

Again, we need provide db4o no information concerning
the myObject's structure.

However, whereas storing an object also stores all
referenced objects, deleting an object does not
automatically delete all referenced objects. We have to tell
db4o specifically if we want to do that, and the reason for
this apparent imbalance is obvious once you ponder it a
few moments. If two objects, A and B, reference a third,
C; and deleting A will delete C, then object B is left with a
dangling reference. The db4o API gives the developer the
ability to "tune" the extent of deletions, precisely to
preclude the possibility of inadvertently creating a
dangling reference.

Similarly, suppose you fetch object A from the database.
Object A references object B. Object B references C, and

Page 37 of 58

objectiveview – www.objectiveviewmagazine.com for back issues

so on off to lots and lots of objects. You may not want to
fetch the entire structure of connected objects when you
fetch Object A. So, db4o provides an "activation depth"
setting, which lets you control how much of an object tree
you pull in when you fetch one object.

By default, the activation depth is set to 5, which is
sufficient for even moderately large structures. Change
the depth to 2, and only the root object and its immediate
"child" objects are fetched from the database. If, however,
you need even more control over the activation, db4o's
API provides triggers and callbacks that let you tune the
retrieval of objects from the database at runtime.

Multiple Query Mechanisms
db4o boasts several query mechanisms, each suitable for
different query needs.

Query-by-example (QBE) is db4o's easiest-to-grasp style
of searching the database, and is ideal for straightforward
"is equals to" queries. To fetch an object (or set of
objects) using QBE, you define a "template" object, pass
that template to db4o's query engine, and db4o returns
the set of matching objects.

The template object is nothing more than an object whose
members are filled with those values you want matched in
the target objects. For example, let us return to the
MyPrinter class we had defined earlier. If we want to fetch
all "Epson" printers from the database, the code looks like
this:

 MyPrinter thePrinter;
 ...
 MyPrinter printerTemplate = new MyPrinter();
 printerTemplate.manufacturer = "Epson";
 ObjectSet result = db4oDB.get(printerTemplate);
 while (result.hasNext())
 {
 thePrinter = (MyPrinter)result.next();
 ...do something with thePrinter...
 }

As earlier, db4oDB is our database's ObjectContainer. We
can iterate through the result collection, which contains
the objects fetched from the database that match the
query.

As stated above, QBE's underlying comparison
mechanism corresponds to "is equal to" matches. This is
obviously a limitation. Also, QBE cannot match the
numeric value of 0, because storing a 0 in a numeric field
causes that field to be ignored for the query.
Nevertheless, as a mechanism for quickly locating a "root"
object to a network of objects, and then using object
references to navigate throughout the network, QBE is
ideal. (Note that you don't have to query an object to fetch
it from the database. If Object A is in memory, and it
references Object B in the database, db4o lets you
retrieve Object B by "activating" it via the A-to-B
reference.)

As a comparison, suppose we had wanted to perform that
same query on an RDBMS. Again, using the OleDB

library calls available in the .NET Framework, it would
look something like this:

string selstr = “SELECT name, model, cost FROM PrinterTable
WHERE “ +
 “manufacturer = ‘Epson’”;
OleDbCommand command = new OleDbCommand(selstr, connection);
OleDbDataReader reader = command.ExecuteReader();
while(reader.read())
{ thePrinter = new MyPrinter();
 thePrinter.name = reader.GetString(0);
 thePrinter.model = reader.GetString(1);
 thePrinter.cost = reader.GetFloat(2);
 thePrinter.manufacturer = “Epson”;
 . . . do something with thePrinter . . .
}
reader.Close();

Notice, as already mentioned, that we had to “assemble”
the object from pieces of data fetched from the table.

Native Queries
For more complex queries, db4o's Native Query system
represents what is possibly the ultimate in query
convenience. To implement a native query, you need
merely write a method that filters out those objects you
want the query to match. And the complexity of the
filtering is practically limited only by the capabilities of the
native language (Java, C#, VB.NET, etc.).

An example will make this clearer. Returning to our
MyPrinter class above, suppose we wanted to construct a
query that returned for us all printers by the manufacturer
"Epson" that were also less than $200. We can implement
a native query that accomplishes this by first defining an
extension of db4o's Predicate class:

public static class CheapPrinters extends Predicate
{
 public boolean match(MyPrinter _printer)
 {
 return((_printer.manufacturer.equals("Epson") &&
 (_printer.cost < 200.00));
 }
}

Once we've defined this Predicate "query class", we can
pass an instance of it to the query() method of an open
database object:

 ObjectSet result = db4oDB.query(new CheapPrinters());

and the result ObjectSet can be accessed just as before.
Only this time, its members are those database MyPrinter
objects that satisfy the criteria established by the match()
method.

Page 38 of 57

The idea underpinning Native Queries is simple and
powerful. The match() method, which can be as simple or
as complex as the situation demands, returns true if the
candidate object (passed into the method by db4o's query
engine) matches whatever conditions are defined. The
method returns false otherwise. It is as if -- when the
query is executed – the db4o engine marches each
candidate object up to the Predicate object's match()
method, and the match() method announces "true" or
"false". Only those objects that received a "true"

objectiveview – www.objectiveviewmagazine.com for back issues

pronouncement are placed in the returned results
collection.

As with QBE, there is no SQL code to write. If there are
syntax errors in the code, those are caught at compile
time ... not at runtime.

S.O.D.A.
The last and most intricate query mechanism provided by
db4o is S.O.D.A. (Simple Object Database Access). It is
also the most powerful, because S.O.D.A. is db4o's
underlying query system. Access to the S.O.D.A. API
gives the most direct admission into db4o's database
engine.

You build a S.O.D.A. query by erecting a tree of
constraints on a query object, and issuing an execute()
method call against that tree. For example, a S.O.D.A.
query that returns all MyPrinter objects whose cost is less
than $200 would look like this:

 Query query = db4oDB.query();
 query.constrain(MyPrinter.class);
 query.descend("cost").constrain(new Float(200.00)).less();
 ObjectSet result = query.execute();

The descend() method call attaches branches to the
query tree, and the constrain() method call fastens leaves
to those branches. Notice that the root of the query tree is
a reference to the MyPrinter class, which establishes the
candidate objects.

On the one hand, because portions of S.O.D.A. queries
are specified as strings, such queries are not entirely
typesafe (as are QBE and native queries). However,
S.O.D.A. queries are extremely fast, can be altered at
runtime, and are not restricted to "equals-to" conditions.

Most importantly, notice that all three of db4o's query
styles are implemented in the native language. In no case
does the developer have to "step out" into a different
language to express the query. And, in all cases, objects
are fetched "whole" from the database. There is no need
to assemble objects from primitive data values at query
time.

Quiet Transactions
Any time that a database application executes a method
call that will modify the database (i.e. a set() or a delete()
method call), db4o invisibly begins a transaction session.
The transaction session remains in effect until one of
three events occurs:

1) The application executes a commit() method call on the
ObjectContainer. In that case, all changes performed

since the transaction was opened are written to the
database.

2) The application executes a rollback() method call on
the ObjectContainer. This causes all modifications made
to the ObjectContainer to be dropped. That is, the
ObjectContainer (the database) is returned to the precise
state it was in prior to the transaction's start. The result is
as though all the modifications made during the
transaction session never happened.

3) The application closes the ObjectContainer (calling the
close() method). The close() method performs a silent
commit(), so the effect on the database is identical to
alternative (1).

So, db4o's transactions give you the ability to organize
complex operations -- any mixture of additions,
modifications, and deletions -- into units that appear to the
database as an atomic operation. That is, if you commit()
a transaction, all changes to the database within the
transaction take effect; whereas if you rollback() a
transaction, no changes to the database within the
transaction take effect.

Actually, there is a fourth event that can terminate a
transaction. Suppose the system crashes during the
transaction session. In that case, when the database
application restarts and the database is re-opened, db4o
detects the interrupted transaction and returns the
database to it’s non-corrupted state prior to the start of the
transaction session. Consequently, db4o databases are
(barring catastrophic destruction of the media on which
the database file resides) crash-proof, thanks to the
database engine’s use of silent transactions.

Objective Benefits
Best of all, db4o is easy to incorporate into an object-
oriented application. The database engine's behavior
"conforms" to the behavior of the rest of the application;
that is, objects act like objects, in or out of the database.
This is true regardless of which query mechanism you
choose. And, once more, it is open source. That connects
db4o to the growing inertia of the open- source
movement, which is filling the programmer's toolbox with
more and more high-quality equipment.

Rick Grehan is a QA Engineer for
Compuware/NuMega Labs. His articles
have appeared in BYTE Magazine, Dr.
Dobbs, Embedded Systems Journal,
JavaPro, and other publications. In
addition, Rick has co-authored three
books on a range of programming
topics.

The International Association of Software Architects - http://www.iasahome.org/ - for details of how to join.

Page 39 of 57

http://www.iasahome.org/�
http://www.amazon.com/Real-Time-Programming-32-bit-Embedded-Development/dp/0201485400/sr=1-2/qid=1163609364/ref=pd_bbs_sr_2/104-6202684-0357547?ie=UTF8&s=books�
http://www.iasahome.org/

objectiveview – www.objectiveviewmagazine.com for back issues

The Testing Lever: Making Progress in Legacy
Code

Michael Feathers discusses how automated testing can

help when working with legacy code…

Sometimes, I feel like the boy in ‘The Emperor’s New
Clothes.’ I’m unduly sensitive to cases where what
people describe and what I see are different. One of the
cases that hits me the hardest is the difference between
code quality as it’s often presented in books, and code
quality out in the field. It’s not that there aren’t examples
of good code out there in industry, but the fact is I don’t
get to see them much as I’d like to. I’m a consultant.
People call me in when they need help, so it is easy to
believe that less than ideal code and broken design are
the norm. Many teams I visit have code bases that are
large sprawls. Their classes are huge; they often have
fifty to a hundred methods, and the median size of the
methods? Well, let’s just say that it isn’t five lines or ten
lines – or twenty.

Most code bases (at least the ones I see) are a hodge-
podge. And, this isn’t just an aesthetic concern.
Companies spend significant time and money trying to get
work done in these swamps, and it is usually obvious that
if the code was structured better, many tasks that might
take four days or five days could take one or two instead.
Poor code quality is just a way of throwing away money.
It doesn’t make anyone’s life easier, least of all
programmers who have to spend most of the time mired
in it. What can we do?

Well, when we encounter bad code, we could rewrite it.
Sometimes that’s the right choice, but large scale rewrites
can be hazardous. You have to make sure that your new
code does exactly the same thing as your old code, and
that can be difficult. No, refactoring is often the better
choice: systematically making the code better by
transforming it piece by piece. But if we are going to
refactor, we have to be very careful. We have to make
sure that we work in a way which keeps us from making
silly mistakes.

Let’s take a look at an example. Here’s a piece of ugly
code in C++:

void Scheduler::perform_consistency_check(string& message)
{
 for(std::vector<Event *>::iterator it = events.begin();
 it != events.end();
 ++it) {
 Event *e = *it;
 if (e->getSlot() > Time6PM
 && dynamic_cast<Meeting *>(e)) {
 report_scheduling_violation(e->getSlot());
 message += "::No meetings after 6PM";
 }
 if (e->getSlot() > Time8PM
 && dynamic_cast<ClientAppointment *>(e))
 message += "::No appointments after 8PM";
 if (e->getSlot() < Time9AM || e->getSlot() > Time6PM
 && dynamic_cast<Flextime *>(e))
 message +=
 "::No Flextime outside of working hours";
 if (e->getSlot() == Time12PM
 && dynamic_cast<Flextime *>(e)

 && !get_meeting(e->getDate(), Time5PM))
 message += "::No deferred lunch without "
 "late scheduled meeting";
 if (e->getSlot() > Time12PM
 && dynamic_cast<Flextime *>(e)
 && get_meeting(e->getDate(), Time12PM)
 && get_meeting(e->getDate(), Time1PM)
 && get_meeting(e->getDate(), Time2PM)
 && get_meeting(e->getDate(), Time3PM)
 && get_meeting(e->getDate(), Time4PM)
 && get_meeting(e->getDate(), Time5PM))
 message += "::No flextime on afternoons "
 "of scheduled meetings";
 if (e->getSlot() == Time12PM
 && dynamic_cast<Meeting*>(e)){
 report_scheduling_violation(e->getSlot());
 message += "::No meetings during lunch";
 }
 if (e->getSlot() > Time12PM
 && dynamic_cast<ClientAppointment *>(e)
 && get_meeting(e->getDate(), Time12PM)
 && get_meeting(e->getDate(), Time1PM)
 && get_meeting(e->getDate(), Time2PM)
 && get_meeting(e->getDate(), Time3PM)
 && get_meeting(e->getDate(), Time4PM)
 && get_meeting(e->getDate(), Time5PM))
 message += "::No client appointments on "
 "afternoons of scheduled meetings";
 }
 dispatch(message);
}

I hope you’ll agree with me that it isn’t the clearest
function in the world, and, obviously, we’ve all seen worse
code, but let’s list a few of its problems:

1. It’s long. Not terribly long, but long enough to
make us scroll.

2. It’s ill-defined. What exactly is
perform_consistency_check supposed to
do? It does at least three things for the caller.
Can you see them?

3. It repeatedly uses reflection (dynamic_cast) to
make decisions based upon the type of an Event.
There is probably a cleaner way of doing the
same work.

Suppose that wanted to make this function better. Where
would we start? Well, my answer is a little different than
what you might expect. My answer is to say that the first
thing we should do is figure out why want to make it
better.

I can imagine what some of you are thinking right now.
You’re thinking that I just gave a list of reasons a few
paragraphs ago: the design is bad so we should just fix it.
Well, I’d love to do that most of the time, but the cold
brutal truth is that you could literally spend your entire life
making the typical legacy code base arbitrarily better, but
you wouldn’t have time for anything else. If you’re going
to go through the trouble to make things better you should
have a reason. Here are some of the best ones:

Page 40 of 57

http://www.amazon.com/Working-Effectively-Legacy-Robert-Martin/dp/0131177052/sr=1-1/qid=1163609507/ref=sr_1_1/104-6202684-0357547?ie=UTF8&s=books�

objectiveview – www.objectiveviewmagazine.com for back issues

1. You have to add a feature to a piece of code, and
you don’t understand it well enough to make the
change confidently.

2. A piece of code is so unclear that it impedes
understanding of surrounding areas.

3. You have to fix a bug and you really don’t want to
go through the trouble of trying to understanding
the code again later, and you don’t want to inflect
that burden on anyone else coming after you
either.

Isn’t it interesting that all of these reasons have something
to do with ease of understanding? I think it’s more than
interesting, it’s significant. Understandability is one of the
most important qualities that code can have. When it
disappears, the work just gets harder and harder without
bound.

What can we do to make legacy code more
understandable?

For me, the answer is: testing. We can write tests for
existing code that help us when we refactor it. The tests
will fail if we change the code in a bad way; but the tests
will do much more for us than that. They will allow us to
build up the net level of understanding in the system.

Here. I’ll show you what I mean in the context of the
function we saw earlier.

Our function has this signature:

void Scheduler::perform_consistency_check(string& message);

It accepts a string called message, by reference, and it
modifies it. We can write tests which show us how the
message string is changed under various conditions:

void test_meetings_allowed_upto_six() {
 Scheduler scheduler;
 scheduler.add_event(new Meeting(“”, Time6AM));
 scheduler.add_event(new Meeting(“”, Time9AM));
 scheduler.add_event(new Meeting(“”, Time3PM));
 scheduler.add_event(new Meeting(“”, Time6PM));

 assert(message == "");
}

void test_meetings_disallowed_after_six() {
 Scheduler scheduler;
 scheduler.add_event(
 new Meeting(“Meeting with Jim”, Time7PM));

 assert(message == "::No meetings after 6PM");
}

void test_meetings_disallowed_during_lunch() {
 Scheduler scheduler;
 scheduler.add_event(
 new Meeting(“Meeting with Jim”, Time12PM));

 assert(message == "::No meetings during lunch");
}

Here we have a few test cases which show that meetings
are allowed until 6PM, but they are forbidden afterwards
and during lunch. Were we able to see this in the original
code? Yes, but the logic was spread around and
surrounded by unrelated conditions. The tests we’ve
written make the logic explicit. Moreover, they are not just
documentation. We can execute them and really see

whether those statements about the logic in
perform_consistency_check are true.

Now that we have some tests, we can refactor. We can
go into the perform_consistency_check function and
regroup the logic for meetings. We can also extract the
logic into its own function and call it from
perform_consistency_check:

bool Scheduler::all_meetings_are_valid(string& message)
{
 bool result = true;
 for(std::vector<Event *>::iterator it = events.begin();
 it != events.end();
 ++it) {
 Event *e = *it;
 if (e->getSlot() > Time6PM
 && dynamic_cast<Meeting *>(e)) {
 message += "::No meetings after 6PM";
 result = false;
 }
 if (e->getSlot() == Time12PM
 && dynamic_cast<Meeting*>(e)){
 message += "::No meetings during lunch";
 result = false;
 }
 }
 return result;
}

void Scheduler::perform_consistency_check(string& message)
{
 if (all_meetings_are_valid(message) && …
 …
}

Now, we can use the tests we’ve written for
perform_consistency_check to make sure that it
uses all_meetings_are_valid to do what it used to
do.

The refactoring we’ve done here is minor, but it is a step
forward. Eventually, we’ll probably want to move toward a
scheme which separates message generation from
checking logic. However, I want to make a point about
the testing: In a typical legacy code base, I would
consider it a significant improvement just to get the three
tests in place that we started with.

Why? I consider those tests an improvement, because
they increase the total understanding in the system.
When we wrote them, they were actually a better than
perform_consistency_check at explaining its
functionality. It’s sad, but true. The tests improved the
system simply because they clarified some unclear logic.

The fact that tests provide this incremental benefit is very
powerful. It means that we can make systems better
progressively, simply by adding tests and refactoring as
we can. We don’t have to solve all problems to make
progress; we just have to resolve to make code better
every time we touch it. And as silly as it is to say, better is
better; it’s not worse. The tests that you write to just to
add a little bit of understanding to a system are powerful
leverage. You can use them to progressively spread the
understanding from the tests to the code as you refactor,
and, in the process, make your work easier, regardless of
how bad things were when you started.

Page 41 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

I do see signs of improvement in the industry. People are
writing more tests and learning more about design. They
are using test-driven development to develop fresh code
which is easier to refactor and easier to change.
However, there’s still a lot of low quality code out there.
It’s important for each of us to know how to pull ourselves

out and make things better. Tests are the most direct
lever we have.

Michael Feathers is a consultant with Object Mentor and
the author of ‘Working Effectively with Legacy Code’
(Prentice Hall 2005).

A Z C H G T X U R A E Z C F G T X U R A

U X P T X C F T X U R A G T X U R A X U

A Z C F G T X U R A A Z C F G T X U R A

U X P T X C F T X U R A G F T X U R A G
R A G T X U R A X U U X P T X C F T X U

X U R A A Z A Z C F G T C F G T X U R A

Starting next issue we will be publishing letters from readers.
Send your LETTERS to:

oveditor@objectiveviewmagazine.com

Letters on software development related issues and/or comments or discussion of
articles are welcomed.

Page 42 of 57

http://www.objectiveviewmagazine.com/�
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com

objectiveview – www.objectiveviewmagazine.com for back issues

Product Spotlight • Enterprise Architect
Model/Code Synchronicity: The UML Holy Grail ― found at last?

Doug Rosenberg takes a look at UML tool Enterprise
Architect’s round-trip engineering

Since the beginning of modeling time, the

gap (sometimes a chasm) between models and code has
always been problematic. Models, the argument goes,
don’t represent reality…only the code represents
reality…therefore the model must be worthless, and we
should just skip modeling and jump straight to code.
Those who have used this argument to avoid modeling
probably felt quite safe in doing so because nobody has
ever managed to make “reverse engineering” or “round-
trip engineering” a very seamless process…until now.
The innocuously named “MDG Integration” product from
Sparx Systems (a companion product to the Enterprise
Architect modeling tool) changes the whole equation.

Bringing Mohammed to the mountain
You can lead some programmers to UML, but you can’t
make them embrace modeling. The ever-present gap
between models and code is one of the reasons for this.
Modeling introduces another environment, another tools
interface, another user interface to learn, and forces the
programmer to leave the familiar confines of their coding
environment, where they have all the comforts of home.
In short, it’s often viewed as a pain-in-the-ass.

But what would happen if the UML model was brought
inside of the programming environment? Let’s say if you
could open your project, right click a menu and say
something like “Attach UML Model”. So you can browse
your use cases, sequence diagrams, classes, etc. from
within, let’s say, Visual Studio (Eclipse is coming in a few
months, but not ready yet). OK so far? Then let’s

suppose you could “hot link” a package of
classes from the UML window to the source code. Nice,
but not compelling yet? How’s this? You can double-click
on an operation on a class in the UML window and
instantly browse to the source code for that method, and
you can edit the code as you normally would in Visual
Studio and update the UML model by right-clicking on the
class and choosing “Synchronize”.

Suddenly, instead of the UML model being a pain-in-the-
ass, the model is actually helping you to navigate through
your code, you can click to see the use cases and
sequence diagrams that are using the classes you’re
building, and you can re-synch the models effortlessly.
Suddenly your UML model is the asset which it was
supposed to be all along.

Gosh, it sounds so…agile...is it really
that easy?

We don’t blame you for being skeptical, so we’d like to
use the remainder of this article to show you an example.
If you’ve seen our book, “Agile Development with ICONIX
Process” (Apress, 2005), or if you’ve been to one of our
open-enrollment public classes, the example might be
familiar to you. It’s a C# /.Net application, modeled in
Enterprise Architect using ICONIX Process, and
developed in Visual Studio.

Page 43 of 57

http://www.softwarereality.com/AgileDevelopment.jsp�

objectiveview – www.objectiveviewmagazine.com for back issues

The application is a map-based hotel finder (we call it the
“mapplet”) that’s in production use on the VResorts.com
travel website (http://smartmaps.vresorts.com), and the
design, from use cases through C# code, is presented in
the Agile/ICONIX book.

You can compare the use cases in the book to the
running application, live on the web, and you can look at
the C# code that makes it work, either in the book, or
inside Visual Studio. In fact you can browse the C# code
using the UML model.

A quick example of driving a use case
to code
This example is borrowed from our book “Agile
Development with ICONIX Process”. It shows a use case
for filtering the hotel display by amenities and by hotel
chain, it’s robustness diagram (you can see the sequence

diagram at the top of this article) and some classes which
are needed to implement the use case.

Use Case: “Filter Hotels”

Filter By Amenity:

The system displays the List of Amenities in the Amenity
List. The user selects one or more amenities from the list
and then selects Update Map. The MapViewer creates a
HotelFilter based on the selected items in the Amenity
List. The MapViewer queries the HotelServer for all hotels
in the AOI and then filters the results with the HotelFilter.
The map is refreshed and a label is placed adjacent to the
map indicating the current selection criterion.

Filter by Hotel Chain:

The system populates a Hotel Chain pick list from the
Hotel Chain table. The user selects one Hotel Chain from
the pick list. The MapViewer creates a HotelFilter for the
selected Hotel Chain. The MapViewer queries the
HotelServer for all hotels in the AOI and then filters the
results with the HotelFilter. The map is refreshed and a
label is placed adjacent to the map indicating the Hotel
Chain selected.
Alternate Scenario 1:

If there are no Hotels that meet the filter criterion, the
following message is displayed: “No hotels meet selection
criterion. Please expand search.”

Here’s the robustness diagram for this use case:

Page 44 of 57

http://smartmaps.vresorts.com/

objectiveview – www.objectiveviewmagazine.com for back issues

And here are some classes:

Finally, here’s some C# code for the HotelFilter class:

public class HotelFilter
{
 private string AmenityFilter;
 private string HotelChainFilter;
 private string HotelChainName;
 private AmenityList Amenities;
 private char [] delimiter;

 public HotelFilter(AmenityList aAmenities,
 string aAmenityFilter,
 string aHotelChainFilter,
 string aHotelChainName)
 {
 Amenities = aAmenities;
 AmenityFilter = aAmenityFilter;
 HotelChainFilter = aHotelChainFilter;
 HotelChainName = aHotelChainName;
 string delimStr = " ";
 delimiter = delimStr.ToCharArray();
 }

 public string GetFilterText ()
 {
 if (HotelChainFilter.Length > 0)
 return "Currently displaying " + HotelChainName;
 if (AmenityFilter.Length > 0)
 {
 string res = "";
 AmenityItem p;
 for (int j = 0; j < Amenities.count; j++)
 {
 p = Amenities.data [j];
 if (p.abbr != null)
 if (AmenityFilter.IndexOf (p.abbr) >= 0)
 {
 if (res.Length > 120)
 {
 res = res + ", ...";
 break;
 }
 if (res.Length > 0) res = res + ", ";
 res = res + p.val;
 }
 }
 return "Currently displaying hotels with " + res;
 }
 return "";
 }

 public bool FilterHotel (string aHotelChain,
 string Amenity,
 ref string hotelAmenities)
 {

 string [] sp;
 AmenityItem p;

 if (HotelChainFilter.Length > 0)
 return HotelChainFilter.ToUpper ().
 Equals (aHotelChain.ToUpper ());
 else if (AmenityFilter.Length > 0)
 {
 sp = Amenity.Split (delimiter);
 hotelAmenities = "";
 for (int j = 0; j < sp.Length; j++)
 {
 p = Amenities.Find (sp [j]);
 if (p != null)
 hotelAmenities = hotelAmenities + p.abbr;
 }
 for (int j = 0; j < AmenityFilter.Length; j++)
 {
 if (hotelAmenities.IndexOf
 (AmenityFilter.Substring (j, 1)) < 0)
 return false;
 }
 }
 return true;
 }
}

Nice and simple so far. Any child could do it. As one of
my old Electrical Engineering professors used to say (I
think we were studying Maxwell’s Laws at the time): “It’s
intuitively obvious to the casual observer”.

But…here’s the six million dollar question: how do we
keep the model and the code synchronized over the
lifetime of the project?

Five Simple Steps to Modeling Nirvana
– without chanting OMMMMM

Page 45 of 57

We wrote a whole chapter in Agile Development with
ICONIX Process about how to synchronize models and
code, and the reasons why it’s important. It’s still just as
important, but the folks at Sparx Systems have obsoleted
the “how-to” from that chapter. Now it’s absurdly simple.

objectiveview – www.objectiveviewmagazine.com for back issues

So simple that an old tool-builder like me wonders “why
the heck didn’t I think of that?”

Here’s how it works:

1. Connect UML model to VS Project
2. Link package in model to VS project
3. Browse source code by clicking on operations on
classes
4. Edit source code in VS
5. Right-click on class and choose Code Services ->
Synchronize

Let’s take these one at a time:

Connect the UML Model to the Visual Studio
Project

When MDG Integration is installed, Visual Studio grows
another brain…whoops, I mean it gains the ability to have
a UML model attached to it. You do this by selecting
“Attach UML Model” from the Visual Studio Solution
Explorer:

Link Package in UML model to the Visual
Studio Project

Visual Studio and Enterprise Architect are advised that
the classes within a certain package should be hot-linked
to source code files in VS.

Enterprise Architect then reverse engineers the code for
you, automagically.

Browse source code by clicking on
operations on classes

Your UML model should provide high-level guidance and
help you to understand how the code is structured.
Hopefully, modeling the system in UML resulted in
cleaner, better organized code. What could be a more
natural way to leverage the investment in the UML model
than to simply click an operation on a class in the UML
browser window, and have Visual Studio pop up the
associated code?

If there’s a more natural way to browse your source code
and maintain a high-level view of the code’s organization,
we haven’t seen it.

Edit source code in Visual Studio

Actually you can either edit the source in Visual Studio, or
edit the operations in the UML browser…

Page 46 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

Right-click on a class and choose Code
Services -> Synchronize

You’ve added some detail (revised parameter list, maybe)
to a class in EA, or you’ve edited the code in Visual
Studio. Now you need to confront the ever-so-painful task
of synchronizing the model and the code. Ever the good
agilist, you’ve read Scott Ambler’s writings on the subject
and for years have practiced “Update only when it hurts”
because this task has been so difficult. Then your models
and your code have gotten out of synch and you’ve
gradually disregarded the models. But, you think to
yourself, what if the UML and the code were really one
and the same. Just two representations of the same
thing…the UML classes and the C# classes united by
their inner-oneness and sameness of purpose. What
would it be like? So you right click on the class you just
modified and select “Code-Services -> Synchronize”.
Ahhhhhh. Feel the waves of bliss sweeping over your
keyboard. You feel your inner self floating out of your
body and looking down at the room. Nirvana at last.

Would you like some project
documentation to go with that code?

Oh, we almost forgot. Do you have annoying managers
who ask you to document your stuff? EA handles that for
you, too…in your choice of RTF or HTML.

Yes! The documentation gets automagically done for you!
Life is good.

For more info…

You can spend two days (with me) working through the
entire example “mapplet” project from use cases through
C# code using Enterprise Architect and Visual Studio at
our open enrollment public training workshops:
(http://www.iconixsw.com/EA/PublicClasses.html).

Some of the material in this article was borrowed from a
book I wrote with Matt Stephens and Mark Collins-Cope
called “Agile Development with ICONIX Process”
(http://www.softwarereality.com/AgileDevelopment.jsp)

Additional material was borrowed from a Sparx Systems
white paper on MDG Integration called “MDG Integration
for Visual Studio 2005” (available from
http://www.sparxsystems.com/products/mdg_integrate.html) You can
use the “mapplet” to find hotels in any city in the US on
the VResorts.com travel website
(http://smartmaps.vresorts.com).

Oh, I almost forgot. You can buy a nice little bundle which
includes a copy of EA Corporate Edition, a copy of MDG
Integration for Visual Studio, and two multimedia tutorials:
“Enterprise Architect for Power Users” and “Mastering
UML with Enterprise Architect and the ICONIX Process”
from the ICONIX website. We call it “EA PowerPack
VS.Net 2005” Just click this link:
http://www.iconixsw.com/EA/PowerPack.html

Doug Rosenberg is President of Iconix Software.

Subscribe to ObjectiveView
email: objective.view@objectiveviewmagazine.com with

subject: subscribe

Distribute ObjectiveView

Page 47 of 57

It’s easy. You link to ObjectiveView using our linkgif, and
your logo will appear on all copies of the magazine.

Contact oveditor@objectiveviewmagazine.com for more info.

http://www.iconixsw.com/EA/PublicClasses.html
http://www.softwarereality.com/AgileDevelopment.jsp
http://www.sparxsystems.com/products/mdg_integrate.html
http://smartmaps.vresorts.com/
http://www.iconixsw.com/EA/PowerPack.html
mailto:oveditor@objectiveviewmagazine.com

objectiveview – www.objectiveviewmagazine.com for back issues

Opinion • Kevlin Henney • Getting Over the Waterfall

Sequential development, as typified by the
waterfall style of development, is the
common whipping boy of anyone
supporting a more iterative approach to
development. However, in spite of the
increased popularity of iterative and
incremental approaches over the last

decade, waterfalls still reflect the most popular formal
approach to managing projects -- rivalled only in
popularity by the most popular informal approaches:
unmanaged and mismanaged. Neither the metaphor of a
stream of water crashing inexorably and forcefully onto
the rocks beneath nor the impressively poor track record
of the approach appear to have prevented the continued
popularity of this way of development.

However, it is all too easy to mock the waterfall approach
without understanding its motivation and attraction;
without such understanding, advocacy and adoption of
agile development can be superficial, dogmatic and
propaganda based, which misses much of the deeper
rationale and actual value of agile approaches. It is not my
intention to defend, let alone advocate, sequential
development as a general approach, but any honest
criticism of it in favour of something else needs to begin
with a more even-handed appraisal.

The organising principle of sequential development can
be summarised quite simply: strictly align development
activities with phases in development. This principle is
tidy, clear and easy to explain: given a number of different
activities that occur in development, combined with the
recognition that a development effort follows a lifecycle
that can be characterised differently at each point in time,
define each phase of time in terms of an activity and run
the phases in sequence. Such a model of development is
easy to lay out and present visually. At any given point in
time it is clear what activity is being performed. The
sequence of activities seems reasonably organised so
that problem discovery and reasoning comes before
problem solution and execution, which in turn precedes
final confirmation that the right thing was built right before
proceeding onto deployment.

This model is entirely logical if you make some important
assumptions: the problem being addressed is stable and
fully understood by all parties (in the same way); the
approach to the solution is well defined and fully
understood by developers; the technology to be used is
fully understood by developers and its use is guaranteed
to be free of surprises. If you can guarantee those
assumptions, you can ride the waterfall and keep your
head above water. But if you can't, the raft of assumptions
quickly unravels into something far less watertight.

Software development is typically a multi-variable problem
with few guaranteed constants. Treating a dynamic
situation with a static plan is a recipe in risk, easily upset
by the slightest change. The waterfall approach has the
laudable intent of attempting to derisk unknowns by

exploring the problem in detail at the start of the lifecycle,
with a final check on things at the end. Unfortunately, in
practice the effect can be quite different: instead of
derisking at the earliest possible opportunity, this
approach pushes and accumulates risk towards the back
end of the lifecycle. Significant decisions are made at the
start, the point of least knowledge of what is involved in
developing a system, both in terms of tangible
requirements and technical requirements.

At the point of greatest knowledge - the end - the chance
for effective change has all but vanished. This is not to
say that there is no merit in emphasising problem
discovery and architectural foundation early in
development, just that these activities are not the
exclusive preserve of the front end of the lifecycle and
their results are not set in stone. It is precisely because of
the uncertainty surrounding these issues that you want to
start them early. The reason you engage in a
development lifecycle with repeating feedback loops is to
give yourself the opportunity to clarify and converge as
you go, replanning and redesigning as you learn rather
than being caught off guard when you're supposed to be
done.

It is perhaps telling that, in response to the publicity
surrounding agile development, some advocates of
waterfall-style development have favoured a rebranding of
sequential process models under the heading "plan-driven
development". The intended implication being that agile
development is unplanned. However, a more accurate
reading is that an agile development lifecycle is not driven
by a plan, and it turns out this is not wrong: agile
approaches tend to be highly planned or, more accurately,
"planning driven", but not "plan driven" -- a subtle but
important distinction. For the reasons examined, being
driven a plan is a fragile and risky approach when what
are assumed to be constants are actually variables. The
role of the term "plan" in agile processes is that of a verb
rather than a noun: planning is an activity that is pervasive
and continuous, not a static artefact produced at an early
stage as input to later phases. It is planning rather than
the plan that takes centre stage in agile development. The
metaphorical entailment of "plan-driven development" is
perhaps closer to the idea of "planned economy" than
anything else -- and makes the majestic, natural imagery
of a waterfall somehow more attractive.

That said, it would be disingenuous to say that plan-driven
approaches exclude the possibility of modification or
revision to an initial plan in the light of new information,
changed circumstances and measures of progress. The
attitude to such changes, however, is that they are
corrections, irritations and exceptions rather than the
normal state of affairs. In spite of much published wisdom
to the contrary, estimates are still often treated as
predictions rather than as forecasts. Some amount of
change and uncertainty is acknowledged, but it is a
grudging and partial acceptance that does not inform the
overall mindset or nature of the development process.

Page 48 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

Given the typical human response to change and
uncertainty, this is hardly surprising: this trait is within
each of us to a greater or lesser extent.

All this suggests that the management of incremental
development, particularly processes intended to be
streamlined and responsive, is not necessarily the path of
least resistance. It sounds hard: it is continuous; it is
constantly buffeted by change; it can come into conflict
with human nature. The apparent alternative of following a
plan that lays everything out in a predictive and tidy
sequence, abstracting out interference from change,
discovery and human nature, does indeed look simpler.
But appearances can be deceptive. Quoting from the last
column ("Down on the Upside", ObjectiveView #9): "A
good abstraction is one that allows us to develop a piece

of software more effectively; a poor abstraction is one that
misleads us by omitting or including the wrong kind of
detail".

In this case, the appeal of the highly planned model
comes from abstracting away some fairly critical details --
details that if taken into account would, by necessity,
change the needs and nature of the development
process. So yes, the management of an agile process
sounds hard and it is, but that's a property of software
development rather than specifically of agile approaches;
using a mismatched model of software development
makes the challenge of management even harder. Where
jumping a waterfall requires a leap of faith, agility is more
openly feedback driven and evidence based, using
smaller steps to ensure footing and gauge the next step.

A Z C H G T X U R A E Z C F G T X U R A

U X P T X C F T X U R A G T X U R A X U

A Z C F G T X U R A A Z C F G T X U R A

U X P T X C F T X U R A G F T X U R A G
R A G T X U R A X U U X P T X C F T X U

X U R A A Z A Z C F G T C F G T X U R A

Starting next issue we will be publishing letters from readers.
Send your LETTERS to:

oveditor@objectiveviewmagazine.com

Letters on software development related issues and/or comments or discussion of
articles are welcomed.

 Subscribe to ObjectiveView

email: objective.view@objectiveviewmagazine.com with
subject: subscribe

Distribute ObjectiveView

Page 49 of 57

It’s easy. You link to ObjectiveView using our linkgif, and
your logo will appear on all copies of the magazine.

Contact oveditor@objectiveviewmagazine.com for more info.

http://www.objectiveviewmagazine.com/
mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com

objectiveview – www.objectiveviewmagazine.com for back issues

Historical Perspectives • Ed Yourdon • Structured Analysis

Ed Yourdon takes a retrospective look at Structured
Analysis …

A long time ago, in a galaxy far, far away,
a growing number of software engineers
began worrying about an emerging

software “crisis.” Computers were being used in more and
more safety-critical applications (including missile
guidance systems, and process control systems in
manufacturing plants); computer systems were getting
larger and more complex, with software playing an
increasingly dominant role.

And the number of bugs, project failures, schedule
slippages, and budget over-runs was becoming
increasingly embarrassing. This may sound like today’s
news, but it was actually discussed as far back as 1969,
when NATO (yes, the very same North Atlantic Treaty
Organization) sponsored a historic conference on
“software engineering.”

The widespread consensus at the time was that the
nascent software industry was faced with a programming
problem: programs were time-consuming and expensive
to code, programs were difficult to test, and programs had
bugs.

Fortunately, a solution was at hand: by the late 1960s, the
industry was already experimenting with a fairly radical
concept known as “structured programming” – articulated
by Edsger Dijkstra, and based on theoretical work
published by two Italian computer scientists (Bohm and
Jacopini).

Alas, structured programming didn’t make the problem go
away: we ended up with well coded (and usually GOTO-
less) programs that still suffered from weak architectures,
subtle interdependencies, and expensive maintenance
budgets.

By the mid-1970s, a new solution to the crisis emerged:
structured design, based on formative work by Larry
Constantine, and an influential 1974 IBM Systems Journal
article by Constantine, Myers, and Stevens. A series of
structured design textbooks were published in the mid-
1970s, one of which (Structured Design, by Larry
Constantine and yours truly) had the intriguing experience
of being discussed in its 30th year of publication at the
2005 OOPSLA conference in San Diego.

Alas, structured design didn’t solve the problem either: at
best, it merely produced brilliant solutions to the wrong
problem. Or, to put it more directly, it didn’t really address
a more fundamental problem: if we don’t understand the
user’s requirement for an automated system, it doesn’t
really matter how good our design, and how well-
structured our code, turns out to be. At the end of the day,
we still haven’t solved the user’s problem.

Enter structured analysis. It turns out
that, even in the early-to-mid 1970s,
some very smart, and very clever,
people at a Boston-based company called Softech had
been thinking about better ways of identifying and
documenting user requirements. Their approach, known
as SADT, was quite powerful, and enjoyed some
impressive successes; however, it was carefully guarded
as “intellectual property” by Softech, and was generally
provided only to large IT organizations by means of a very
expensive license. Most of the civilized world was
blissfully unaware of its existence.

Meanwhile, several of the people who had been heavily
involved in structured design – including people like Tom
DeMarco, Chris Gane, Trish Sarson, and several
colleagues of mine at YOURDON, Inc. – were thinking
about extending the concepts and tools of structured
design into the world of systems analysis, requirements
modeling, and requirements documentation. As
mentioned above, we were already seeing, first-hand in
several consulting projects, that “programming” wasn’t
really the problem, nor was “design.” The real problem
was trying to communicate with intelligent, but non-
technical, business people to understand their
requirements in a way that we could “feed back” to them
for confirmation.

At the time, the business of “understanding” a user’s
requirements typically involved interviews, surveys,
brainstorming sessions, and various other forms of
person-to-person communication. And that still remains
true, to a surprising extent, 30 years later: a system
analyst will often sit across the table from a business
person and say, “Let me interview you to find out what
you do, and what you’d like to see in the new system
we’re going to build for you.”

What we didn’t have at the time – and we do have today,
in a large number of situations – is the ability to prototype
pieces of a “straw man” system very quickly, for
immediate feedback from the user. Remember: all of this
was taking place shortly after the invention of fire and
electricity: we didn’t have PC’s, we didn’t have Excel or
Access or Java or Visual Basic. We didn’t have fourth
generation languages of any kind, and we didn’t even
have word processing tools to edit the massive, monolithic
“Victorian novel” specifications that usually resulted from
the series of interviewing sessions.

So the interviews and surveys and specification-writing
process went on for weeks, months, and sometimes even
years; the result was typically a massive pile of paper,
hand-typed on ancient electric typewriters, and delivered
to the business users en masse for their review and
approval. In the worst case, the users had completely lost

Page 50 of 57

http://amazon.com/s/ref=nb_ss_gw/104-6202684-0357547?url=search-alias%3Daps&field-keywords=death+march&Go.x=0&Go.y=0&Go=Go�

objectiveview – www.objectiveviewmagazine.com for back issues

interest in the system; in the best case, the users
desperately tried to read, understand, and provide
feedback on an overwhelming document.

In the best case, the specification document would be
revised and delivered to the users for another round of
reviews and approvals – until they agreed that it was
“right,” or simply ran out of energy to keep making
corrections. In the worst case, the systems analysts
discovered that the cost of changing the document was
too much to bear: I consulted on more than one project in
the 1970s where senior management decreed that any
changes to the specs would be incorporated in the
software – because code was easier to change than
English documents!

So, if there’s one good thing that structured analysis did
for the software industry, it was encouraging both analysts
and end-users to break out of the “text-only” mode of
describing requirements. In its place, we substituted the
notion of graphical (pictorial) models of a system. And we
insisted that such models be organized and presented to
the users in a top-down, hierarchical, partitioned fashion –
so they could review an overview of the entire system on
one page, or any lower-level set of requirements in
isolation from the others.

That concept – essentially that a picture is better than a
thousand words of requirements documentation – has
survived for 30 years, even if the notational details (and
the organizing principles of that notation) has changed. In
the 1970s, we envisioned the key graphical model of
structured analysis as a data flow diagram, of which this is
a simple example:

Today, it’s more likely that we would present an object-
oriented model of requirements to a user, based on the
notation of popular methodologies such as UML. But it
would still be a picture, and we would probably discover
that business users would prefer to look at a simple
picture than a thousand pages of mind-numbing text.

Of course, what they would really like to look at is a “real”
system, with real input forms and real output displays
(whether in the form of a Web page or a printed report).
And with today’s prototyping tools, we can obviously do
that; but if the system is large enough and complex
enough, there is still great benefit in providing a pictorial
overview of various aspects of the system – so that the
user can focus on the “big picture” without being
overwhelmed by the details, and also so the user can
focus on a particular perspective of the system.

The data flow diagram (or DFD) shown above
emphasizes a functional perspective – i.e., it draws the
reader’s attention to the fact that the proposed system (in
this case, a publishing system) has three major functions
represented by the three “bubbles.” Each of the three
bubbles can then be “partitioned” into a separate DFD
showing the functional decomposition into lower-level sub-
functions. And the partitioning process can continue as
long as necessary; early structured analysis practitioners
often spoke of “bubbling on down to the bottom” of a large
complex set of requirements.

The DFD also provides a pictorial reference to three
databases (customers, orders, and invoices), but it
doesn’t say anything about the relationship between those
databases. And it shows something about the flow of data
between the various functions, without bothering to say

anything about details of the data
elements flowing back and forth.

It soon became apparent that in
many business-oriented systems, the
data relationships were as important
as the functional, if not even more
important. In any case, the data
relationships represented a different
perspective on the requirements, and
often demanded a separate series of
discussions and interviews with the
business user. This was
accomplished with a separate
modeling notion known as an entity-
relationship diagram (or ERD), an
example of which is shown here:

The ERD shows nothing about the
functions being performed by the
system, but instead concentrates on
the entities (or what we would now
consider to be the attributes of an
object, without the associated
methods).

Additional graphical models (e.g.,

state transition diagrams, or STDs)) were eventually

Page 51 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

added to the core structured analysis notation, and
detailed documentation techniques (known as “structured
English mini-specs”) were introduced to describe the
business requirements of “bottom-level bubbles” in the
DFD, as well as the detailed description of attributes in the
ERD, and the data flows between the DFD bubbles.

It all worked reasonably well, and the whole approach
gained increasing popularity throughout the 1980s. But as
with any new idea, problems eventually emerged and
grew more and more annoying:

• While vastly superior to the monolithic Victorian
novels they replaced, the combination of DFDs,
ERDs, STDs, detailed data dictionaries, and mini-
specs grew overwhelming for large systems; for
some large government systems, there were as
many as 10,000 “bubbles” in the bottom-level
DFDs. Remember, all of this was being done
manually in the era before PCs and graphical
modeling tools like Visio. IT organizations began
to be overwhelmed by the burden of drafting all of
the diagrams.

• Because the structured analysis models were
created and maintained manually, it became more
and more tedious to modify them as requirements
changed throughout the project. As a result, we
were cursed with the same problem we
experienced with Victorian novel specifications:
the structured analysis models would only be
created once, and all of the “new” requirements
could only be found in the code that resulted from
the development work.

• Because the structured analysis model involved
different kinds of diagrams (DFD, ERD, and STD),
along with various kinds of low-level
documentation (data dictionaries and mini-specs),
consistency checking between the models
became more and more cumbersome. By the late
1980s and early 1990s, this problem was
ameliorated somewhat by so-called Computer-
Aided Software Engineeering (CASE) tools, but
some organizations had already given up.

• Like many other methodologies and good ideas in
the software field, structured analysis was
sometimes over-sold as the panacea that would
cure all ills. The ultimate example of this problem
came with the CASE tools – which, in their early
incarnations, often cost as much as $10,000 per
software engineer. CASE vendors sometimes

sold their products as “model-to-code” engines
that would “automatically” convert user
requirements into fully developed, working code.
Alas, the reality never lived up to the promise.

• The separation of functions and data (as
represented by the DFD and ERD) proved to be a
fatal flaw in many projects – for, among other
things, it meant that the work was divided into two
separate groups of IT professionals. One group
tended to worry about the functions (which the
business users were sometimes equally
interested in, but sometimes less so); and the
other group worrying about the nuances of data
relationships (with occasional forays into
premature discussions of normalizing the entities
they had created), with little or no concern about
the functions.

This “functions-vs-data” schizophrenia was eventually
resolved with the introduction of an object-oriented (OO)
approach to requirements analysis in the early 1990s,
after OO had gained a “critical mass” of popularity as a
programming and design approach. This eventually led to
the 1995 “unified method” representing the convergence
of OOA methodologies formulated by Grady Booch,
James Rumbaugh, and Ivar Jacobsen; and the notation
for that unified methodology was eventually formalized
into today’s Unified Modeling Language, or UML.

Meanwhile, CASE tools faded away, and were replaced
by Integrated Development Environments (IDEs). And the
cost of both the workstations and the tools dropped
dramatically, to the point where the tools often cost less
than $1,000 (and can sometimes be acquired as open-
source products, for free), and will run on the PC that
software engineers already have on their desktop.

Interestingly, while some things have changed drastically
in the past 35-40 years, some things have not changed at
all. We still have projects that are late, over budget, full of
bugs, and sources of intense frustration by the business
users. All too often, business users and/or IT
professionals still document their requirements in
Victorian novel tomes, and they refuse to change the
requirements documentation after their first iteration. And
IT professionals are still subject to hype and over-selling:
they will often believe a vendor’s frenzied pitch about
prototyping, without remembering that a prototype doesn’t
provide the detailed documentation that is often
necessary for final acceptance and ongoing maintenance
of a system.

Equally interesting, structured analysis never disappeared
completely from the computer science/software
engineering curricula of universities around the year; I still
get frantic questions every year from desperate students
about to face a final exam on the subject.

Not only that, but structured analysis has enjoyed a new
birth of popularity: organizations who are focusing on
business process improvement may or may not be
interested in automating/ computerizing an existing
business process; but in order to understand whether it

Page 52 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

There are, after all, worse fates. I could still be writing
COBOL programs…

can be improved, they need a simple way of modeling the
existing process, as well as the “to-be” process. Though
object-oriented analysis and UML could certainly be used
for that activity, I’ve been surprised to see how many
organizations have “re-discovered” data flow diagrams
and the other structured analysis modeling notations.

Ed Yourdon is an internationally-recognized computer
consultant, as well as the author of more than two dozen
books, including Byte Wars, Managing High-Intensity
Internet Projects, Death March, Rise and Resurrection of
the American Programmer, and Decline and Fall of the
American Programmer. His latest book, Outsource:
competing in the global productivity race, discusses both
current and future trends in offshore outsourcing, and
provides practical strategies for individuals, small
businesses, and the nation to cope with this unstoppable
tidal wave.

Whether structured analysis will still be around 30 years
from now is something I won’t even attempt to predict.
After all, I was one of those people who firmly believed
that COBOL would vanish from the earth by 1990 … and
it will probably still be here long after I’m dead. As for
structured analysis: well, perhaps it will provide a
modestly useful activity to keep me out of trouble after I’ve
become a doddering old retiree.

A Z C H G T X U R A E Z C F G T X U R A

U X P T X C F T X U R A G T X U R A X U

A Z C F G T X U R A A Z C F G T X U R A

U X P T X C F T X U R A G F T X U R A G
R A G T X U R A X U U X P T X C F T X U

X U R A A Z A Z C F G T C F G T X U R A

Starting next issue we will be publishing letters from readers.
Send your LETTERS to:

oveditor@objectiveviewmagazine.com

Letters on software development related issues and/or comments or discussion of
articles are welcomed.

Page 53 of 57

Subscribe to ObjectiveView
email: objective.view@objectiveviewmagazine.com with

subject: subscribe

Distribute ObjectiveView
It’s easy. You link to ObjectiveView using our linkgif, and

your logo will appear on all copies of the magazine.
Contact oveditor@objectiveviewmagazine.com for more info.

mailto:oveditor@objectiveviewmagazine.com
mailto:oveditor@objectiveviewmagazine.com
mailto:objectiveview@objectiveviewmagazine.com

objectiveview – www.objectiveviewmagazine.com for back issues

Treating Tests as Software
Kevin P. Taylor explains why we must treat test code with the same

respect as other source code …

On a recent project, I was pair programming with a
talented and experienced programmer. Talented and
Experienced was relatively new to the project and this
was my first opportunity to pair with him. When I was in
the driver’s seat, I noticed that Talented and Experienced
was fidgeting and his obvious discomfort was growing as I
continued typing. In the test that we were working on, I
spotted a variable misleadingly named “tax.” I opened
Eclipse’s rename dialog box and typed in
“expectedTaxRate.” Talented and Experienced exploded,
“It is just a test! Let’s spend our time on the real code.”

A few weeks later, I attended an OpenSpace discussion
session entitled “Are Tests Software?” Didn’t all agile
programmers consider unit tests an integral part of their
software? In fact, I would argue that on an agile
development team with comprehensive unit tests in place,
tests must be treated with more care than the functional
code they protect. When a team has a robust and flexible
test harness around its functional code base, the team is
liberated to refactor that code with confidence, knowing
the tests will complain if the functional code breaks.

But, what gives confidence to developers when they
refactor or modify the tests themselves? Since writing unit
tests against unit tests would lead nowhere, instead, great
care must be taken when tests are refactored or updated
to handle new or changing functionality. In this article,
we’ll review current views of what software quality
consists of and how these characteristics are reflected in
unit tests. Then, we’ll discuss specific things you can do to
improve the quality of your unit tests.

Software Quality
Software quality is an elusive concept. Is software quality
a measurement of how closely
software fulfills its
specification? Is it how well the
software meets end user
needs? Or, should software
quality be defined as how well
it is designed and written, i.e.
how readable and
maintainable the source code
is?

Software quality becomes
even more difficult to define
when we consider the
imbalance in skill and
experience amongst different
software teams and the
varying external pressures
different teams cope with.
What is considered acceptable
code in one shop may be

considered defect-ridden spaghetti
code in another. The first shop may
be primarily concerned with quickly
delivering adequately correct Web applications and may
have a high tolerance for defects. The other shop may be
working on safety-sensitive systems, so would certainly
be much less tolerant of defects. However, they may still
have very low quality standards regarding code design
and maintainability.

ISO 9126 Standard
ISO 9126 is an attempt to standardize the definition of
software quality. According to ISO 9126, software can be
evaluated against each of six quality characteristics.

Functionality
The functionality of software refers to what software does
rather than how it does it. For unit tests, this reflects how
accurately and completely the tests measure the
correctness of the functional code. Do the unit tests test
all the scenarios and execution paths? How thoroughly do
they assert the expected behavior of the functional code?

Reliability
The reliability of software is associated with its capability
to maintain its specified level of performance under
specified conditions. Maturity, fault tolerance, and
recoverability are the three elements of reliability. Unit test
reliability is primarily a measure of its maturity, i.e. the
presence or absence of logic and runtime errors.

Usability
The usability of software consists of three sub-

characteristics. The first,
understandability, is
concerned with how easy it
is to determine the purpose
of software and whether
the software is applicable
to our needs. In other
words, should we use it?
The next is concerned with
how learnable software is.
Finally, operability is a
measure of how easy is it
to actually use software:
What is the level of effort
required? Usability of unit
tests is of paramount
importance to developers.
Being able to quickly find
the appropriate unit test,
understand what scenario
is being tested, and modify
the unit test is at the heart

Unit Testing Tips - Summary
• setUp() is for setting up
• Use one TestCase per fixture scenario
• Write reusable fixture logic
• Keep assertions simple
• Use meaningful identifiers
• Pair program
• Test your tests
• Run > 100 tests per second
• A test must never affect another test’s outcome
• Ensure test failures are easy to debug
• Use stubs to temporarily help test-drive new

code
• Use fakes liberally to isolate tests
• Use mocks sparingly to assert interactions

Page 54 of 57

objectiveview – www.objectiveviewmagazine.com for back issues

of test quality.

Efficiency
The efficiency of software can be evaluated by
considering how fast it is (CPU time and I/O throughput
rates) and how resource intensive it is (memory, CPUs,
socket connections). Unit test efficiency manifests itself by
how fast the test runs and how isolated it is from external
resources such as file systems and network connections.

Portability
The portability of software refers to how well it operates in
different environments, such as different operating
systems. A unit test’s portability is primarily concerned
with how well it runs on all targeted operating systems
and how well it runs in different execution environments,
such as via an IDE or a continuous integration tool such
as CruiseControl or AntHill.

Maintainability
Software maintainability characterizes the design and
clarity of the software’s source code. Maintainability
directly affects developers who must analyze and modify
software. Indirectly, maintainability affects the owners and
users of the software by influencing the costs involved in
enhancing the software. Since unit tests are used by
developers in source code format, maintainability of unit
tests is logically equivalent to the usability characteristic of
unit tests that we already looked at.

Treat Your Tests Well
According to Kent Beck, Ron Jeffries coined the phrase
“Clean code that works” to describe the goal of test-driven
development (TDD). Jeffries’ concise description of quality
code is not only applicable to your functional code base.
Let’s see how it can help guide us toward higher quality
test code. Turning your unit tests into clean code that
works requires keeping them simple and intentional. But,
according to Jeffries, having clean code is only half the
solution: code must also work. For unit tests, this means
they must be correct, sufficiently complete, fast enough,
independent, and isolated.

Simple
Simple unit tests keep fixture setup as simple as possible
by only setting up a single set of closely related fixtures
per test case. Use the setUp method of the test case and
never use conditionals to get clever with the set up. Keep
it simple. When you feel the need to add a conditional
statement while setting up your fixtures, instead create a
new test case with its own setUp method and fixtures.

Use an ObjectMother or Builder to remove complex,
duplicate fixture code from your tests. This will make the
code easier to understand and reduce the chance of
errors.

Simple unit tests keep assertions and expectations as
simple as possible while proving that the functional code
is correct. For example, if asserting a value is null, use

Assert.assertNull(value) instead of
Assert.assertEquals(null, value).

Simple unit tests don’t contain equivalent duplication.
Equivalent duplication is duplication that is not
coincidental. For instance, if a test is expecting 10 line
items on an order and also a quantity of 10 widgets, the
10 is coincidental. It should be represented by two
different identifiers. However, if 5:00 P.M. is asserted as
the expected order cutoff time in multiple tests, 5:00 P.M.
is equivalent duplication and should be represented by a
single identifier.

A common source of duplication in unit tests is caused by
overuse of JUnit’s built-in assert methods. Use the extract
method refactoring to pull reusable assertion logic into
custom methods. You should have plenty of custom
asserts in your unit tests, such as assertCollectionEquals,
assertDateBefore, assertBeforeOrderCutoff(Date), etc.

Intentional
Along with being simple, clean unit tests must
communicate to the reader what is important for her to
know about the tests. Intentional unit tests are those that
have scenarios that are easy to identify, have fixtures and
assertions that are easy to understand, and clearly
document the expected behavior of the functional
software.

To make unit tests intentional, use the same techniques
we have all become accustomed to applying to functional
code. Use identifiers that are clear and meaningful. Use
refactorings such as extract method, to document
business logic. Use comments sparingly. Use your team’s
coding standards and common accepted idioms for the
language that you are working in.

import junit.framework.TestCase;

public class HelloWorldTest
 extends TestCase {

 protected void setUp()
 throws Exception {
 super.setUp();
 }

 public void test_sayIt() {
 Person person = null;
 HelloWorld helloWorld = new HelloWorld(person);
 assertTrue(
 "Hello!".equals(
 helloWorld.sayIt()));
 assertTrue(person == helloWorld.getPerson());
 }

 public void test_sayIt_withName() {
 Person person = new Person();
 person.setName("Kevin");
 HelloWorld helloWorld = new HelloWorld(person);
 helloWorld = new HelloWorld(person);
 assertTrue(
 "Hello! Kevin is 0".equals(
 helloWorld.sayIt()));
 assertTrue(person == helloWorld.getPerson());
 }
 public void test_sayIt_withNameAndAge() {
 Person person = new Person();
 person.setName("Kevin");
 person.setAge(30);
 HelloWorld helloWorld = new HelloWorld(person);
 assertTrue(
 "Hello! Kevin is 30".equals(

Page 55 of 57

 helloWorld.sayIt()));

objectiveview – www.objectiveviewmagazine.com for back issues

 assertTrue(person == helloWorld.getPerson());
 }
}

Listing 1: A TestCase doing too much

Listing 1 has a TestCase with all the fixture set up code
within the test methods. This TestCase contains three
different scenarios. Each scenario is set up and asserted
in a different test method. You’ll notice there is a fair bit of
duplication between test methods. Also, the test methods
are difficult to follow because there is so much fixture
code to wade through (not really, in this trivial example,
but use your imagination).

Listing 1 is also using assertTrue() for every assertion.
This further decreases readability.

import junit.framework.TestCase;

public class HelloWorldTest_withNullPerson
 extends TestCase {

 private Person person;
 private HelloWorld helloWorld;
 protected void setUp()
 throws Exception {
 super.setUp();
 person = null;
 helloWorld = new HelloWorld(person);
 }
 public void test_sayIt() {
 assertEquals(
 "Hello!", helloWorld.sayIt());
 }
 public void test_person() {
 assertNull(helloWorld.getPerson());
 }

}

import junit.framework.TestCase;

public class HelloWorldTest_withNameOnly
 extends TestCase {

 private Person person;
 private HelloWorld helloWorld;
 protected void setUp()
 throws Exception {
 super.setUp();
 person = new Person();
 person.setName("Kevin");
 helloWorld = new HelloWorld(person);
 }
 public void test_sayIt() {
 assertEquals(
 "Hello!, Kevin", helloWorld.sayIt());
 }
 public void test_person() {
 assertSame(person, helloWorld.getPerson());
 }
}

import junit.framework.TestCase;

public class HelloWorldTest_withNameAndAge
 extends TestCase {

 private Person person;
 private HelloWorld helloWorld;
 protected void setUp()
 throws Exception {
 super.setUp();
 person = new Person();
 person.setName("Kevin");
 helloWorld = new HelloWorld(person);
 }
 public void test_sayIt() {
 assertEquals(
 "Hello!, Kevin", helloWorld.sayIt());
 }
 public void test_person() {
 assertSame(person, helloWorld.getPerson());
 }
}

Listing 2: Now three TestCases

Listing 2 contains cleaned up versions of the tests. Since
each method represented a different scenario, I moved
each scenario to its own TestCase and moved the fixture
code to setUp().

To assert HelloWorld behaviors, I dumped all the
assertTrue() methods and replaced them with more
specific assertions, including assertNull() and
assertEquals().

There is room for improvement in listing 2, though. Notice
the duplication between the setUp() methods. (Again, this
may not be obvious in this trivial example, but imagine
that Person took 10 lines of code to set up.) This can be
improved by extracting the set up of Person into a
reusable Builder or ObjectMother. I will leave this as an
exercise.

Correct
Of obvious importance, unit tests must be correct. This is
not always easy to achieve. Before TDD, a developer had
to devote his attention to ensuring that his functional code
was correct. Now he has unit tests to give him positive
feedback that his functional code is correct (or not
correct!). No such luck with unit tests: Good, old-
fashioned logic must be relied upon.

Don’t rely only on your own über-programming skills.
Whenever possible use pair programming. It provides an
effective safety net when working on unit tests. Likewise,
always remember to wear two hats when programming: a
coding hat and a refactoring hat. Code when you have a
red bar. Refactor when you have a green bar. Don’t mix
the two.

Sufficiently Complete
In addition to being correct, unit tests must also be
sufficiently complete. Very few code bases have 100%
test coverage and each team must determine their target
coverage level. Use code coverage tools such as Emma,
Coverlipse, and Jester. They can help you measure how
much of your code base is covered by tests, find those
gaps in coverage, and evaluate the semantic quality of
your unit tests (how well the assertions are written).

Fast Enough
Finally, in addition to being correct and sufficiently
complete, unit tests should run fast enough to be
convenient. Fast tests encourage developers to run the
entire test suite frequently throughout the day. Fast
enough is subjective, but a good rule of thumb is that 100
unit tests should run in less than one second (much
faster, if possible) In a current project of mine, our team
has 2800 unit tests that run in 15 seconds.

Page 56 of 57

That is almost all there is to turning your unit tests into
“clean code that works.” Two additional qualities are
specific to unit test code, though: independence and
isolation.

objectiveview – www.objectiveviewmagazine.com for back issues

In addition to making a test failure easier to track down,
isolated units take less fixture set up. This makes the tests
easier to read and digest, as you don’t have to understand
as much set up logic to use the tests.

Independent
Firstly, unit tests must run independently of other tests.
This ensures that one test’s side effects will not affect the
outcome of another test. This usually occurs when fixtures
are not properly torn down between test runs. Bad fixtures
could manifest themselves as external resources that
retain some state or static class variables that are not
reset between tests.

Conclusion
As teams move along the continuum from no test
coverage to comprehensive test coverage, the value of
their test suites increase. How valuable the tests
ultimately become depends on two factors: How well the
tests document the behavior of the system; and, how
much flexibility the tests provide for the team when
refactoring existing logic. To maximize the value of your
team’s test suites, treat the tests with the same care and
consideration that you treat functional code.

Isolated
Lastly, unit tests should exercise a specific cohesive unit
of your functional code base. Isolating the unit you are
testing has two advantages. Most importantly, isolating
the code you are testing makes it easy to figure out why a
test is failing. If you are debugging into multiple levels of
an object graph or call stack trying to figure out why a test
is failing, you need to further isolate the unit of code being
tested from its collaborating objects. This is where stubs,
fakes, or mocks come in handy. (Beware over-mocking,
though, which can make tests brittle, i.e. cause internal
refactorings to break tests.)

Kevin P. Taylor is a Principal Consultant at Obtiva (http://
www.obtiva.com), a firm that specializes in helping
development teams transition to Agile methodologies.
Kevin has written courses on test-driven development and
Agile Project Management. Kevin is also the editor of
http://java.about.com and the treasurer of Chicago Java
Users Group-West.

Industry experts agree that Code Generation is an essential tool in your development toolbox:

Dave Thomas: "The leverage of code generators is incredibly important if you are to engineer accurate and maintainable systems."
Andrew Watson: "Our data shows that an MDA approach yields noticable savings in all but the very smallest projects."

Code Generation 2007 is a new event for practising software developers. By taking part you will find out why these and
other industry experts are so excited about the possibilities offered by emerging tools and technologies in this area.
Come to Code Generation 2007 and improve your understanding of this important field and find out how to improve your
day-to-day development work using these tools and technologies. Our aim is to draw the best practitioners from around
the world to create a high quality learning experience for all participants.

http://www.codegeneration.net/cg2007/

Page 57 of 57

http://www.codegeneration.net/cg2007/�
http://www.codegeneration.net/cg2007/�
http://www.codegeneration.net/tiki-read_article.php?articleId=9
http://www.codegeneration.net/tiki-read_article.php?articleId=31
http://www.codegeneration.net/cg2007/
http://www.codegeneration.net/cg2007/

	ObjectiveView Issue #9 - Newer Technologies Focus
	ObjectiveView Issue #8 - Agile Development Special
	ObjectiveView Issue #7 - Focus on .NET
	ObjectiveView Issue #6 - Component Development
	ObjectiveView Issue #5 – Focus on Use Cases
	 ObjectiveView Issue #4 – Focus on XML
	ObjectiveView Issue #3 – Focus on XP
	ObjectiveView Issue #2
	ObjectiveView Issue #1
	XP
	Agile Development
	UML and Modelling
	Long time in software development!
	Industry Fads or Ideas of Real Benefit
	What’s Good About Ruby?
	Ruby on Real Projects
	Limitations
	You Just Can’t Get the Staff
	Conclusion
	References
	C# Version 2.0
	Static Classes
	Partial Classes
	Generic Types
	Nullable Types

	Anonymous Methods
	Iterators

	C# Version 3.0
	Object Initialisers
	Collection Initialisers
	Implicit Typing
	Anonymous Types
	Extension Methods
	Lambda Expressions and Lambda Statements
	The Basis of Language Integrated Query (LINQ)

	Conclusion
	References
	Why Database Refactoring?
	Implementing a Database Refactoring
	Database Refactoring and Testing
	Why Not Just Get it Right to Begin With?
	In Conclusion
	References / Recommended Reading
	Objects In The Database
	The Relational Situation
	Object/Relational Databases
	Life Is Simpler
	An Open-Source Example: db4o
	Multiple Query Mechanisms
	Native Queries
	S.O.D.A.
	Quiet Transactions
	Objective Benefits
	Bringing Mohammed to the mountain
	Gosh, it sounds so…agile...is it really that easy?
	A quick example of driving a use case to code
	Use Case: “Filter Hotels”

	Five Simple Steps to Modeling Nirvana – without chanting OMMMMM
	Connect the UML Model to the Visual Studio Project
	Link Package in UML model to the Visual Studio Project
	Browse source code by clicking on operations on classes
	Edit source code in Visual Studio
	Right-click on a class and choose Code Services -> Synchronize

	Would you like some project documentation to go with that code?
	For more info…
	Software Quality
	ISO 9126 Standard
	Functionality
	Reliability
	Usability
	Efficiency
	Portability
	Maintainability

	Treat Your Tests Well
	Simple
	Intentional
	Correct
	Sufficiently Complete
	Fast Enough
	Independent
	Isolated

	Conclusion

