ObjectiveView

The Object and Component Journal for Software Professionals

Pr;ogramrﬁ'"ing
s v The Topsy Turvy
World of UML

v" A Profile of XML
for Developers

= T — ~ ‘M . “-"""'*;

Claude Monet 1840-1926 “ PoplarsfromMarsh”

Plus:
Designing Product Line The OPEN

Distributed Architectures Process
Object Systems Specification

Published by Sponsored by

RATIO

L\

OO0 consultancy — training — tools — recruitment ObjectMentor Inc.
see www.ratio.co.uk for back copies www.objectmentor.com

ObjectiveView

The Object and Component Journal for Software Professionals

CONTENTS

Introducing Technology

A Profile of XML
by Richard Vaughan

Object Design

Designing Distributed Object Systems
by Jason Garbis 8

Object/Component Architecture

Product Line Architectures

by Jan Bosch 13

The Topsy Turvy World of UML
by Mark Collins-Cope &

Hubert Matthews 19

Development Process

OPEN isthe Objective

by Brian Henderson-Sellers 21

Subjective Views

Interview with Robert C. Martin
On eXtreme Programming 30

IN THE NEXT ISSUE OF OV...

v Interview with lvar Jacobson

v Clemens Szyperski:
“ Recent I nsightsinto Components”

v Bertrand Meyer on Component-
Based Development
v Ralph Johnson:

“ The Dynamic Object-model
Architecture’

CONTACTS

Editor
Mark Collins-Cope
markcc@ratio.co.uk

Production
Karen Ouellette
karen@ratio.co.uk

Free subscription
objective.view@ratio.co.uk
(with ‘subscribe’ as subject)

Circulation / Sponsorship Enquiries
objective.view@ratio.co.uk
Tel: +44 (0)20 8579 7900

RATI O I P R OUD

S PONSOR

© TOOLS
Europe 2000

“ Enterprise Architecture - Patterns - Components’
Mont Saint-Michel / Saint-Malo Normandy/Brittany, France

5-8 JUNE 2000

Visit http://www.toolsconferences.com/europe

for programme and registration detail s

TOOLS...

the major series of international conferences entirely devoted to Objects

I ntroducing Technology Series
A Profile of XML

Richard Vaughan with an introduction to XML...

| ntroduction

The Mexican poet Octavio Paz once commented
‘the differences between the spoken or written
language and the other ones — plastic or musicd —
are very profound, but not to such an extent that
they make us forget that essentiadly they are dl
language: expressive systems which possess
significant power.’

Nowhere more than in computing do expressive
systems abound, our most recent bouncing baby
being the eXtensible Markup Language or XML. In
fact Junior is now astrgpping toddler of two years
of age and given his explosive growth rate one
wonders just how big he will become in adulthood.
However, the computing industry is dso guilty of
putting much old wine in many new bottles. There
are, therefore, other crucid questions, for example
what kind of childis XML and what does it actudly
want to be when it does grow up?

This article examines XML, its origins, syntax and
its relaionship to software systems.

Some Background

Throughout this decade, the growth of the Internet
and the success of the Web has seen an increasing
demand for amore powerful version of HTML that
can serve as auniversa datainterchange standard.
For avariety of reasons it was not possible to extend
HTML itself, not least because it is apresentation-
oriented schema The search therefore began for an
dternative.

Standard Generdized Markup Language (SGML)
was origindly considered but was rejected because
of various inherent problems such as the chalenge
of devel oping suitable parser technologies. It was
therefore apparent that a new | anguage was needed
and thus XML (asubset of SGML) was born. In
fact, the specification was devel oped very quickly
over aperiod of only eighteen months. This was
mostly because of the high demand for auniversd
format, however it was aso in an atempt to prevent
the standard from becoming clogged with lots of
extra‘goodies’, most of which appear on only afew
people’ swish lists.

Note however that athough XML can be used for
transmitting information across a network (and has a

very big future in terms of the Internet) it is not, by
definition, an Internet issue. In fact, it canjust as
easily be used in anon-networked environment.
When an application receives some data, this can
come from a secondary storage medium such as disk
or tgpe as easily as from anetwork link. Developing
this principle, the information does not even have to
come from ‘outside’ the machine & dl. Applications
caninfact use XML to communicate between
themselves a run time using operating system
services such as pipes and shared memory arenas.

Given that XML is not fundamentally an Internet
issue, it istherefore not a‘web language’. It is
possible to present XML datain abrowser by means
of stylesheets, however thisissue is peripherd to the
core standard. XML is therefore not adirect
replacement for, or extension of HTML, athough
the future of HTML is now amoot point.

What' sthe Deal ?

The pivotd issueistha XML isauniversd file
format and therein lies the source of the commotion.
The principle of divide and conquer has proved time
and again to facilitate systems devel opment because
it dlows usto ded with problemsin manageable
chunks. Infact, the softer the links between its
components, the more robust asystemwill be as a
whole. Indeed, the *decoupling’ theme isthe prime
mover in the current trend towards component-
based devel opment.

XML therefore enables us to soften the links
between system components, thereby alowing us to
protect and capitalize upon our devel opment
investments. XML can do this in two ways.
Spatidly speaking, an application can communicate
with another physicaly separate application without
advance knowl edge of that gpplication (hence the
fuss about XML and the Net). Tempordly speaking,
an gpplication can write datawithout prior

knowl edge of the future applications that may read
it.

XML and the Application

This decoupling is accomplished by sending
descriptions of the information being communicated
along with the information itself. In other words the
datastream aso contains metadataor ‘mark-up’ and
the price paid for this approachis that applications

must incorporate some form of parser to separate
mark-up from data.

The simplest form of parser isthe event driven
variety whereby an appropriate procedureis caled
for each type of mark-up construct encountered.
Thisis effected in C/C++ by means of pointers to
functions. The second class of parser isthe tree-
based form where aninterna data structure known
as a‘document tree’ (essentialy an object
hierarchy) is generated during andysis. Once the
treeis built, the applicationis free to navigate the
structure, reading and updating it as it chooses. If
need be, the tree can then be written out again, as
XML, to afile or network link.

Note that anumber of third party parser
technologies are available to devel opers. Examples
are Microsoft’s COM based component, Vivid
Creation’s library and James Clark’ s Expat.

Let us now explore some XML markup and see how
the syntax and grammar operate.

A complete XML script is cdled adocument and
dthoughthisistreated as asingle logical object,
physically adocument can be composed of many
separdefilesor ‘entities. An XML document must

therefore be composed of a least one top-level file
cdled the * document entity’ and any files separate
tothisarecdled’ externd ertities' . The document
entity must contain asingle top-level ‘element’, the
generd form for whichis as follows:

of that data. Note that Tag will normaly be some
useful label for the enclosed data. This syntax
operates such that elements can be nested within
each other. For example:

<Tag>

<Nest edTag>
Dat a
</ Nest edTag>

<Nest edTag>
Dat a
</ Nest edTag>

</ Tag>

Which dlows complex composite datato be
represented. The second aspect to element syntax is
that the start tag can carry ‘dtributes’ . For example:

<Tag Attributel = “Data”,
Attribute2 = “Data’>

Inessence, thisis no different to the first generd
example we saw inthat an element is stated as
containing various dataand this is one of the more
confusing aspects of XML. Inagrammar such as C,
block enclosure and nesting is the only containment
model available, which makes for aconsiderably
simpler syntax.

In addition, ‘empty’ element tags are possible which
consist of astart tag but no corresponding end tag.
These take the following generd form:

<Tag/ >

<Start Tag>

Dat a

</ EndTag>

Here <Tag> tells the application that some marked-
up datafollows and the </ Tag> indicates the end

Note the trailing slash indicating that this tag stands
aone. Empty element tags can possess dtributes
and infact thisistheir only red purpose asthereis
no other way for themto ‘enclose’ data

Let’s now see an example of the above generd
formsinaction:

<Conpact D sc Type “Musi c”
Title

Band

Title
Runni ngTi ne
Copyri ght

<Tr ack
“4, 33"

Title
Runni ngTi ne
Copyri ght

<Tr ack
“4. 19"

Title
Runni ngTi ne

“10. 56"
Copyri ght “N

“Shifting | mages”
“ St anpede” >

“Huckl eberry Fi nn”
“G Shelter”/>
“Leron Lum nance”
“A Livingboy”/>
“The Seei ng Roonf

Kiwit”/ >

</ Conpact D sc>

This piece of XML describes a Compect Disc. The
atributes in the most enclosing start-teg stete that it
isamusic CD and detail the name of the album and
the band that recorded it. Our hypothetica CD aso

contains three tracks and the empty element tags
representing these possess atributes describing the
title, running time and author.

Document :

Campact DEc :

Tipe = Muse
TR = Shiftihg Inages
Band = Stampede

K

Track: Track .

Track:

TRie = Hucklkebeny Fho
Running time = £.33
Awthor= =z Sheter

Thie = Lemon Laminance
Furning time = 4.9
Ahor=A Lizng oy

TRie = The Seehgp Room
Running time = 10.56
Awhor= N Kk

Figure 1. Document tree that would be generated from this document (in UML notation)

Constraining Markup

The above XML script is an example of what is
cadleda‘well formed document. This means that it
obeys dl the rules such that start and end tags are
properly nested etc. However, there are no
constraints placed on this document. The
CompeactDisc element could easily contain an
element describing the price of bread, which would
of course be inappropriate.

To assert the required structure and content of
marked-up content one must include a Data Type
Declaration or DTD. During processing the parser
checks the document’ s element content and
structure against the constrants stated inthe DTD.
If the elements conform to the DTDs type
declarations then the document is said to be vaid.

In addition to aDTD, documents can contain an
‘XML Declaration’ in the document entity and a
‘Text Declaration’ in externd entities. These can be
used to state what version of XML is being used
(dthough only version 1.0 currently exists), the kind
of character encoding scheme used and so on.

Note that DTDs, implemented as externd entities,
provide the substrate for the XML verticd market

dataformats that are becoming increasingly
available. Here an organization can define and
publish adatainterchange standard for agiven
domain thus making alinguafrancafor that domain
available to dl interested parties. Examples include
ChemML for defining documents that describe
chemicd and molecular information, DocBook for
paper publications and MathML for mathematica
equations and data. There are dso aslew of

busi ness-oriented data formats such as FinXML,
OFX, Bizta k and cXML.

Further Markup

XML goes much further than the above example
however. It is possible to embed comments within
entities (files) just as one would in atraditiona
programming language. There are some differences
however in that comment text can be made available
to the application that is parsing the document and
there are certain restrictions on the placing of
comments within an entity.

It isaso possible to create predefined entities within
the DTD, which can be referenced in marked-up
content rather than spelt out explicitly. This fecility
isvery similar to the #define preprocessor directive
in C/C++. Note that these predefined character

sequences can be contained within entities that are
separate to the main document entity and in this
case the *entity reference’ mechanism operates very
much like the #include preprocessor directivein
C/C++. Further to this, it is possible for the DTD to
be held in part or whole in aseparate file just as one
would keep dl C/C++ type declarations and
prototypes in separate headers.

XML dso supports the concept of conditiona
sections which operate in much the same way as
would ‘comment out’ asection of code inaprogram
source file. Note however that this and the entity
reference mechani sm explained above do not enjoy
the flexibilities we are used to in C/C++.

Of course there are times when we wish to use
mark-up characters suchas <, > and & intheir
literd form rather than as signas to the parser. To
cater for this, XML dlows these characters to be
escaped by means of a'‘character reference’
mechanism. In addition, XML defines the concept
of non-parsed character dataor CDATA sections.
These are areas of content that the parser ignores
completely thereby dlowing markup charactersto
be used literdly without recourse to character
references. The purpose of CDATA sectionsisto
enable sequences of raw binary datato be carried
within adocument thereby enabling an gpplication
to send any kind of data such as images or sound.

I mplications

There are however anumber of implicaionsin
using amarkup solution to datainterchange. Firstly,
because XML documents are human readable this
means that they can dso be created by hand using a
simple text editor program. Thisisin marked
contrast to the use of proprietary file formats, which
often yield machine-readable dataonly.

However, dthough proprietary formats are generdly
not human readabl e they can be considerably faster
to read and write and can therefore mean faster
goplicatiions. Thisis because the ‘meaning’ inthe
dataisimplicit inits sequentid byte ordering, as
opposed to being explicitly stated by bulky
metadata. Similarly the ‘understanding’ of the data
isintegrated into the gpplication code itself,
obviating the need for a separate parsing stage
between the information and the application’s
interna datastructures.

In addition, marked-up datameans larger files and
longer data streams. These therefore take up more
disk space and take longer to transmit across a
network connection. In addition, an XML
application will often be larger and slower because
of the parsing technologies involved. Indeed, thisis
the classic time and space tradeoff we must accept

every time we choose to decouple systems
components still further. I.e. performance gets
slower and software gets bigger.

Findly, there are the human resource costs to
consider inamove to XML. Programmers need to
understand the syntax to be able to work with DTDs
and aso need experience in working with parser
interfaces in order to produce shippable code.

As pointed out earlier however, the true significance
of XML isthat disparate gpplications cantak to
each other. Using XML, an application can write
and read data to and from other unknown
aoplicaions. Moreover, should one redly need
speed of transmission, it is quite possible to mix the
proprietary and universa file format gpproaches by
wrapping binary datain CDATA sections.

Further to this, XML text can be compressed before
transmi ssion, which ameliorates the bandwidth
consideration significantly. Note that various
schemes have been suggested for making XML
more terse, usualy at the risk of errors, however
none of these have been much more effective than
using compression techniques. In essence, XML's
design favours readability and robustness over space
considerations.

Conclusion

In many ways the advent of XML can therefore be
seen as part of atrend towards greater unification,
which has apardlel inthe rise of (UML) and this
can only be for the generd good.

However, as aforma grammar or ‘expressive
system’, XML simply does not measure up. It is
fraught with restrictions and duplications and
generdly lacks the flexibility that we enjoy in
languages such as C++. For example, there are two
entity reference mechanisms, DTDs use ‘ parameter
entities’ and content markup uses ‘ generd erntities'.
There are dso restrictions in entity reference syntax
regarding externd entities. In addition, one can use
either atributes or element nesting to the same
effect and this causes considerable confusionin
XML neophytes.

Furthermore, comments can be used to signd
sections of adocument that must be ignored.

Yet CDATA sections do the very same thing, while
conditiond sections can dso be employed to the
same ends but only in external entities. Why not
have a single mechanism for ‘blindfolding’ the
parser? This woul d make markup semantics easier
to understand and parsers would thus be easier to
write, more reliable and faster in operation. To
signd the difference between acomment and run of

binary data one could use some form of ‘ comment
header’ .

Currently, anumber of periphera standards are
under development such as XLL (XML Linking
Language), XPath, XPointer, XSL (XML Stylesheet
Language) and XQL (XML Query Language).
Amongst these are XML schemas, which are a
proposed dternative to Document Type
Declaraions. One reason that these are being
promoted is because DTD syntax is inextensible.
That isto say that additiona markup properties
cannot be expressed beyond what the lexicon
allows. But wait aminute, are we not talking about
the extensible Markup Language...?

To be acomplete heretic, one can argue that aclose
cousin of C not asubset of SGML should have been
developed. Learning XML would then pardlel the
transition from C++ to Javawhere the syntax is so
similar that an experienced C++ programmer can be
up to speed with Javain amatter of days. Instead of
having to digest aset of new (and somewhat arcane)
semantics, programmers would be able to read and
write XML syntax within hours. Moreover, the
grammar in which gpplications were coded (whether
C++ or Java) would be near identicd to the
grammar written and read by those applications.
Now that would be real unification.

Muddying the weters still further, aninitiative has
recently been launched to develop acut down

version of XML caled Smple Markup Language or
SML. Proponents point out that most devel opers are
using only asubset of the full specification and to
standardize on that would therefore resultina
language that was easier to learn and implement.
The proposed SML specification would be the same
as XML but with no attributes, processing
instructions, DTDs, CDATA sections and so on.

In conclusion, it would seem that Junior is aCurates
Egg and very much in astate of flux.

Moreover, we have been here before with Javaand
have seen discrepanciesin virtua machine
implementations and proprietary extensions to the
specification. XML is aready showing similar
blemishes with, for example, discrepancies between
parsers. An overarching solution can only work if
the standard is adhered to by dl and to the letter.

The redity however istha givenits potentia and
the industry’ s response, individual s and
organizetions dike cannot afford to ignore XML.
Indeed, it would appear that, despite the confused
picture, companies are aready investigating and
implementing the XML approach because they fear
being left behind. It may have its shortcomings
however given the backing of the heavyweights and
its potentia for the Internet; XML (in whatever
formit growsinto) is not goingto go away.

Richard Vaughan is a consultant and trainer with Ratio Group Ltd., spedialising in C++,
Patterns and XML. Richard can be contacted at ‘ richard.vaughan@ratio.co.uk’ .
Ratio Group can be contacted on +44 (0)20 8579 7900.

PUBLIC SCHEDUWLE C OU R SE
RATIO

We K now the Object of...

XML for Software Developers

A Four-Day Hands-On Course
by Richard Vaughan
2 Dates in London, UK
6 —9 March 2000 - 17— 20 July 2000

This course will give you a sound theoretical understanding of XML and its related specifications,
while providing practical experience in implementing and applying XML within applications. It
covers a range of tools, technologies and approaches essential for managing the data interchange
requirements of a distributed computer environment.

For more information on this course, contact Ratio on +44 (0)20 8579 7900
or by email at bookings@ratio.co.uk

Please note: dasssizeislimited, so book early!

Jason Garbis, author of Enterprise CORBA,
discusses the differences between designing stand-alone
and distributed object systems...

SR .
| ntroduction interface. Thisiswhy, whenwe look at awell-

designed component gpplication, it is appeding and

At first glance, it seems that acomponent-based neturdl to make some of these functiond .
application should be equally usable whether the components accessible remotely, or to centrdize
components are contained within asingle process this functiondlity.

(locd), or distributed across multiple processes
(remote). Idedly, we' d be able to migrate from a
locd component-based gpplication to aremote one
in astraightforward manner, perhaps even
automaticaly with the help of atool or two.
However, thisis not the case. Thereisa

fundamentd difference between loca and remote
gpplications, even if they are both component-based.
Migrating from one to another requires acrestive
human element, and designing for one is different
from designing for the other. We cannot blindly
transfer the object model from one to the other.

If we think about moving from aloca, component-
based application to aremote one, what we are
redly taking about here is the differences between a
2-tier architecture and an N-tier architecture.
Actudly, thisis asimplification, since most well-
designed applications are internaly layered, and can
therefore be thought of as having internd tiers, and
not just being a 2-tier gpplication. However, the
essentid differenceisthat these tierswill now be

physicaly separated into distinct processes, perhaps
on different hosts.

This may mean that the server elementswill be
servicing multiple clients concurrently, which raises
anumber of additiond issues. Alternatively, each
client process could have its own dedicated server
process. This deployment patternis only gpplicable
under certain circumstances, and is less frequently
used. In generd, distributed applications tend to
consist of server processes than service multiple
concurrent clients.

That’s the bad news. The good news is that
designing for locd and remote applications are
nonethel ess similar tasks, with alot of overlap. In
this article, we explore the differences and important
things to be aware of. Anillustrative way of doing
thisisto look a an example of aloca component-
based application, and examine how it would
behave if it were magicadly converted to aremote
gpplication. However, before we can do this, we

need establish some context for this task. . .
Sample Application

Let’s define acomponent-based application as an
gpplication that makes use of one or more Let’ s examine a sample component gpplication, and
functiondly distinct elements (components), eachof | see wha happens if we simply distribute it across
whichis encapsul ated inside awell-defined servers and hosts.

L= Position ~o
—— Modification |\ ~o
N \‘~\
‘
Logging —
= K Database
—

B>

>
U

Authorization

Figure 1. Elements of a simple financial services management application

Traders use the GUI to perform financid andysis
(inthe Financid Anaysis component) and modify
the holdings (positions) of their various portfoliosin
the Position Modification component. These two
functiona elements make use of the Authorization
and Logging components. All the components
(excepting the GUI) make use of the database as
well. There are multiple traders, and therefore
multiple client-side gpplications running
concurrently. The database can handle this, because
al accessto it is performed withinthe end user’s

logon. The position manager’ s updeates are
transactiond; again the database properly keeps
these updates isolated until the client gpplication
either completes the transaction, or times out.

Because we did agood job designing our
components, and chose atechnology that is well-
suited to remote as well asloca access, we now
decide to repackage and redeploy this gpplication,
with remote access to our components.

Position
Modification

\

C3 Financial [~
4 Analysis [[77~
N

N
N

SN OO
A Database
—]
-~

—

z
7
/

’

’
~ 3 o ’
N Authorization

-

Figure 2. Possible deployment diagram

We now have multiple processing running
concurrently in our system, with some form of
communi cation between them. There are many
implications of this new deployment: First, the
remote components are now “ farther avay” from
each other. This means that rather than making local
(in-process) method invocetions, dl inter-
component interaction must use some mechanism to
communicate between processes or across hosts.
Any such remote invocation will be much, much
slower than acorresponding locd invocation, so the
performance of the system will be slower.

Second, client elements now have to somehow
obtain areference to each remote component at
runtime, rather than relying onloca references
typicaly resolved a link time.

Third, we have broken up our locd, relatively
monolithic system into anumber of distinct
component communi cating across a network.
Therefore, there are many more things that can go
wrong, and we must be able to detect and handle a
falure of any of the elements of the system.

Fourth, some of the components are now shared by
multiple client processes concurrently. This means
that we have to address issues of concurrency, client
session management, security, and transactions.
Fifth, we may need to duplicate functiondity or
components in adistributed model. For instance, we
may want to have both loca and remote logging
elements, in order to log greater detail locdly than
remotely, and to be able to continue logging in the
event of afalure.

Wow! That certainly seems complex and dangerous,
and may be scary enough to convince us not to
develop distributed applications at dl! Fortunately,
of course, we not typicaly faced with migrating a
locd component gpplication to aremote component
gpplication, but rather designing these separately.
Because the design process for these two tasks is
different, we can address dl these issuesin our
distributed system model, rather than addressing
them after the fact. That is, we cannot simply
translate from alocd object model to aremote
model. To turn this statement on its head, designing
for locd accessis different than designing for

remote access — it includes the additiona step of
turning alocd component model into one suitable
for remote access.

How can we begin to adapt our design process to
address the different characteristics of locd and
remote systems? First, we need to recognize that our
object model should properly reflect dl our

knowl edge of our business domain. This seems like
an obvious god; the point is that we want to
consider the intended di stribution aspects of our
system only after our knowiedge of the business
model is relatively complete. That is, we suggest an
additiond step in the design process, where we
begin to model the system'’s distribution, and design
the exposed component interfaces based on the
business objects, the distribution architecture, and
the use cases.

Approachesto Handling
Distribution

We offer the following genera gpproachesto the

distribution step. Remember that we begin with a set

of components suitable for locd access, and need to

modify this so that it results in acomponent that can

be robustly and efficiently accessed remotely.
Increase the granularity of exposed components
Make judicious use of non-Object-Oriented
elements, such &s structures

Let'slook a these inturn.

I ncrease the granularity of exposed
components

The object model should contain as many elements
as are needed to properly model your business
domain. However, this canresult in afine-grained
object model; that is amodel with many “ smal”
classes, with many attributes or methods exposed
across the classes. This may make sense for locd
access, but may perform poorly for remote access,
due to both the large number of remote method
invocations that must be performed, as well as the
large number of object references that must be
obtai ned and managed by the client. By increasing
component granularity, we mean consolidating loca
classes into asmaler number of remote
components, and increasing the amount of work
performed for each remote invocation. This has the
effect of reducing the number of object references
our clients must obtain and manage, as well as
reducing the number of remote method invocations
performed.

Of course, these tasks must be performed
intelligently — ay, there’ s the rub. Our consolidated
component should only be comprised of logicdly

related loca classes. Likewise, by deliberately
reducing the number of methods exposed, we are
changing the flavor of our system, and often
offering service-level interfaces rather than
atribute-level interfaces. The important thingisto
make sure that this consolidation is done with full
knowl edge of our expected use cases.

Make judicious use of non-Object-

Oriented elements
When designing components for remote access, it is
important to redize that not everything should be an
object. This may seem unagppealing to purists, but in
prectice, it is often anecessary step in order to
achieve acceptabl e performance and scd ability. Our
intention should be to look a how clients need to
access the data associated with our objects, and
based on this knowledge, present the datain
efficient and concise manner. For instance, consider
aclasswith 10 atributes. Inalocd application, it
may make sense to expose this state via 10 getter
and setter methods. For aremote application, such
an element would be very inefficient to use, and
would be better off representing the stateinasingle
datastructure with 10 fields, and only expose a
single get and set method.

Another approachis to not expose business, but
rather expose manager objects, which manipulate
the data associated with the business objects. Inthis
case, clients make invocations on the manager
objects, and identify the target object by passingin
an Object ID to the manager object. Let’slook a an
example of performing both these steps.

Position

PositionStatus
Company ID

CurrentValuation(...)

buy(...)
sell(...)

Purchase Lot

DateOfPurchase
Price
NumberOfShares

currentPerformance...)

Figure 3. Example of object model performing
both steps suggested above.

Boththe Posi t i onand Pur chaselLot elements
are model ed as objects, each having some attributes
and methods. In addition (not shown), we will need
aPosi ti onFact or ytocreae Posi ti on
objects. The effect of choosing this model is that

everything is an object. Thisis conceptudly easy to
work with, and useful, for aloca application.

Let's consider how this model would behave as a
remote gpplication. We map thisto OMG IDL ina
straightforward way, as follows:

/1 OVG | DL
/'l typedefs, enuns,
i nterface Purchaselot;

t ypedef sequence<Purchaselot >| ot Seq;

interface Position
{
attri bute PositionStatus status;
attribute string

Money current Val uation);
Pur chaseResul t buy(..);
Sal eResul t sell (.);

| ot Seq get Lots(..);

}

i nterface Purchaselot

{
attribute Date dateO Purchase;

attri bute Money purchasePrice;
attribute long nunberOf Shares;

Per f or mance current Per f or mancdg ..) ;

}

conpanyl D,

structs and exceptions omtted
/1l forward decl aration

These interfaces are rather fine-grained — in order to
fully evduate aposition, clients have to obtain
referencesto one Posi t i onobject, and multiple
Pur chaselot objects, and must make numerous
remote invocations. If our use cases are such that

thisis acommon occurrence, our GUI will likely
perform slowly. Designing for remote access would
lead usto aslightly different model, of coarser
granularity. An example of thisis shown below.

/1 OMG | DL

/'l some typedefs, enuns, structs and

struct PositionLot

{
string lotldentifier;
Dat e Dat eOf Pur chase
Money Price;
| ong Number OF Shar es;

b

exceptions omtted

t ypedef sequence<PositionLot >seqPositionLots;

struct Position
L
string
Posi ti onSt at us
string
Money
seqPosi tionLots

posi ti onl D
st at us;
conpanyl D,
current Val ue
| ots;

i nterface PositionManager

{

Position getPosition(in string positionlD);
Pur chaseResult buy(in stringpositionlD, .);

Sal eResult sell (in stringpositionlD,

}

i nLotl DSequence | ot sToSel |, .);

With this model, client gpplications only have to
obtain asingle object reference — the

Posi t i onManager. Positioninformationis
exposed as asingle data structure, which clients can
efficiently retrieve in asingle invocation on

get Posi tion) . Eachtimeaclient makes an
invocationonthe Posi t i onManager, it
identifies the position to work with, by passing a
posi ti onl Dargument. This gpproachis abit like
aRemote Procedure Cdl (RPC), but has a number
of advantages for remote systems. First, it tends to
reduce the number of remote invocations made by
clients. Second, it usualy reduces the number of
object references that clients must obtan. These two
advantages are especidly true for the common
search-and-sel ect-one use case, where clients
perform aquery and display the results so that the
user can select one business object to perform
further work with.

Note that this example shows both the coarsening of
interfaces (by eliminating multiple interfacesin
favor of amanager interface), and the introduction
of datastructures rather than object atributes. In
many cases, we may choose to make use of only one
of these gpproaches, and still obtain significant
benefits. For example, rather than eliminating the
Posi t i oninterface, we may choose to keepit,
and augment it with a corresponding

Posi ti onl nf odaastructure. Combining these
will dlow us to view the business object as data
when it’s most beneficia (such as in search-and-
select, or update), but aso treat it as an object when
that perspective is beneficid (such asininvoking
semanticaly meaningful business methods, or
deding with relationshi ps between objects).

Going from Remote to Local

What about the reverse task — that of taking remote
components and combining them into asingle, loca
process? In generd, this step can be performed

without modifications to the deign, as long as the
required infrastructure functiondity is supported
locdly as well as remotely. Obviously, the
platforms and languages must be compatible, in
order to combine these components into asingle
process. In addition, adistributed gpplication may
rely on the containing server to supply some
infrastructure elements, such as security or
transactiondity. If components are put into asingle
process, without acontainer, such features may be
lost. This would be the case, for instance, with an
Enterprise JavaBean. It relies onits container to
enforce the transactiondity and security declared by
the bean developer. If aclient were able to invoke
directly on the bean implementation outside of a
container, security and transactional ity would be
lost.

Conclusion

Designing acomponent agpplication for remote
access involves additiona considerations than
designing for loca access. We suggest an additiona
step in the design process, where business objects
are compared to the anticipated use cases, and
modified to expose coarser interfaces and make use
of non-object-oriented elements such as data
structures. In addition, remotely accessed
components must address new issues such as
security (authorization and authentication),
concurrency, partid failure, or transactions. These
issues may have been nonexistent, or relied on
implicit solutionsin aloca environment. Ina
distributed environment, they must be explicitly
addressed. Despite the additiond complexity, the
benefits of distributed component applications are
well-proven and well-worth the effort required. The
guidelines outlined here should help you redize
these benefits.

Jason Garbisis Princpal Consultant with IONA Technologies, and is co-author of ‘ Enterprise CORBA',
published in 1999 by Prentice Hall Professional Technical Reference.
Jason can be contacted at ‘ jason.garbis@iona.con .

Object/Component Architecture Series
Product Line Architectures

Jan Bosch, author of the forthcoming book 'Design and Use of I ndustrial Software
Architecture’ discusses software product lines...

| ntroduction

Achieving reuse of software has beenalong
standing ambition of the software engineering
industry. Every since the 1960’ s, the notion of
constructing software systems by composing
software components has been pursued in various
ways. Inthe first proposas, components conta ned
functions that could be reused by gpplication
programmers, whereas, with the emergence of
procedura programming languages, the level was
lifted to modules. Although modules could be of a
considerable granularity, they were intended to be
reused without adaptation which reduced their
usefulness drasticaly. The subsequent paradigm, i.e.
object-oriented programming, provided asolution to
that problem by representing modul es as classes that
could be inherited and extended by subcl asses.
However, the granularity of classesis limited, which
lead to the definition of object-oriented frameworks.
A framework was traditiona ly intended to provide
the basis for gpplication devel opment, but, during
recent years, frameworks are used increasingly often
as coarse-graned components.

Component-oriented programming has been an
emerging trend during the 1990s. Most proposas to
achieving component-based software devel opment
assume amarket divided into component

devel opers, component users and amarket place.
However, this proved to be too ambitious for most
types of software. This has been identified during
recent years and there has been a shift in focus from
world-wide reuse to company-wide reuse of
components. Pardlel to this development, the
importance of an explicit design and representation
of the architecture of asoftware system for the
fulfilment of the quality requirements of systems
has become increasingly recognized.

The combination of the discussed concepts and
devel opments lead to the definition of software
product lines. A software product line consists of a
product line architecture, aset of reusable
components and aset of products derived from the
shared assets. Among others, one of the important
differences between traditiona gpproachesto reuse
and software product linesisthat it is explicitly
recognized that adopting a software product line
approach has organizationd, process, technol ogy
and business aspects, i.e. it affects the complete

software devel opment organization. The success
from early adopters, including severd large
european industries, in the context of EU ESPRIT,
i.e. ARES and PRAISE, or ITEA/Eureka, i .e.
ESAPS, projects, and otherwise, has shown that this
technology has the potentid of creating pervasive
reuseinrea industria contexts; something that
traditiond gpproaches to reuse did not succeed with.

The notion of software product lines is the topic of
this article, which will only provide an overview
over the concepts and issues associated with this
gpproach. For amore extensive discussion, | refer
you to an upcoming book from Addison-Wesley
[Bosch 00]. Inthe remainder of this article, we first
introduce the notion of software product lines and
especidly the phases and processes associated with
the development and evolution withit. Then we
discuss some organizationd models for software
product line based devel opment and we describe
some experiences from companies that have adopted
this approach.

Software Product Lines

Software product lines present ahighly promising
approach to achieving reuse of software within an
organization. In figure 1, the main components of a
software product line are shown. The main comporent
isthe product-line architecture, i.e. the software
architecture that cgptures the commondities
between the products in the product line, while sup-
porting the differences between the various
products. The second concept is the component set
that contains implementations for the architectura
components defined by the product line architecture.
These components may be traditiona code modules,
but aso object-oriented frameworks are frequently
used. The third main asset in the software product
lineis represented by the products derived from the
reusabl e assets. For each product, first a product-
specific software architecture is derived from the
product line architecture. Then, suitable components
are selected from the component set and instantiated
with product-specific information and, where
necessary, code extensions. If necessary, product
specific code is devel oped for the product
requirements not supported by the reusabl e assets.
Findly, the product architecture, the instantiated
components and the product-specific codeis
integrated to form the fina software product.

product-ine archisciue

aw

__. -
an =

,4

product n

Figure 1. Overview of the main software product line assets

In the sections bel ow, we discuss the devel opment,
deployment and evol ution of asoftware product line
in more detail.

Devel opment

When the decision to initiate a product line has been
taken, the first step is the development of a software
architecture for the product line that supports the
functiona and quaity requirements of the systems
included in the family. This phase includes activities
such as scoping, commonality and variability
andysis, architecturd design and verification.

Once the product line architecture has been
designed, the subsequent phase is the devel opment
of the components that make up the common part of
the system family. We discuss two types of
components, i.e. traditiona components as
presented by contemporary literature, e.g.

[Szyperski 97], and object-oriented frameworks. In
our cooperation projects with various industria
software devel opment organi zations, we have seen
anincrease inthe use of object-oriented frameworks
as components in product line architectures. One
reason for thisisthe highlevel of configurability
that is available within an object-oriented
framework. This suits the notion of system-families
very well, since it dlows for the easy configuration
of components for individud systems.

The devel opment of systems based on the product
line architecture and components could be viewed
as the third phase in devel opment. However, since

the focus of this phase is on software architectures
and reusable components, we discuss system
devel opment in the next part, i.e. deployment.

Designing aproduct line architecture
The design process of the product line architecture
consists of six main steps, i.e. business case
andysis, scoping, feature and system planning,
product line architecture design, component
requirement specification and verification. Below
each of the stepsis briefly summarized:
Businesscase analysis: Thisanaysisis
concerned with establishing, a asufficient level
of certainty, that the product line approach
represents a cost-effective and superior
gpproach. In addition, the andysis provides
datafor deciding on arevolutionary or
evolutionary path to convert from a product-
based to aproduct line based organization of
software devel opment.
Scoping: This activity determines the systems
and the product features that are included inthe
product line. It may not be beneficid or even
desirable to include al systems and featuresin
the product line; especidly not from the start.
System and feature planning: The focus of
this step is on identifying the characteristics of
subsequent versions of the product line
architecture. Since there will be continuous
devel opment of the product line architecture in
terms of the features and systems it supports
and incorporating new, but anticipated, features
is generdly considerably easier than

unanticipated features, it isimportant to
develop aplan for feature incorporation.
Product line architecture design: The main
step inthe processis, obviously, the design of
the software architecture for the product line. In
[Bosch 00], we present the Quaity Attribute-
oriented Software Architecture (QASAR)
design method. QASAR consists of three main
phases, i.e. functionaity-based architecture
design, architecture assessment and architecture
transformation. The latter two phases are
performed iteratively until the software
architect is confident that especidly the quaity
requirements are fulfilled. In addition, the
software architecture design process should
maximize the possibility to derive product
architectures from the product line architecture.
Component requirement specification: The
software architecture dictates a set of
components that implement the required
behaviour. This activity is concerned with
specifying the requirements for each of the
components. The requirement specification
defines the interfaces, the functiondity, the
quaity attributes and the variability that the
each component should support.

Verification: Findly, before entering the next
activity, i.e. component development, it is
important to verify that the product line
architecture supports the requirements specified

by the stakeholders. This can either be
established by a stakehol der meeting or by
architecture assessment teams that perform an
externd eva uation.

Devel oping reusable components

The component development processiis rather
constrained due to the aspects, rules and constraints
imposed by the software architecture and the,
potentid, presence of legacy code that may need to
be incorporated. Components, in our definition,
should support three types of interfaces, i.e.
provided, required and configuration interfaces. The
provided and required interfaces are intended for the
interaction with other components. The provided
interface presents the operations that can be invoked
on the component, whereas the required interface
specifies what components and operations the
component requires access to for correct operation.
The configuration interface is intended for use by
the user of the component. When constructing an
gpplication or system based on reusable
components, each component needs to be
instantiated and configured. The configuration
consists of defining, for each variation point
supported by the component, what concrete
variation should be used in this component instance.
Each configuration interface provides accessto a
variaion point and alows the software engineer to
control it.

Animportant aspect of component development is
to design the configuration interface. A number of
configuration mechanisms are available to the
software engineer, e.g. inheritance, extensions
(especidly providing hooks), configuration
(selecting and arranging predevel oped pieces on
functiondity), template instantiation and generation
(generating an instantiated component based on an
input specification).

Findly, the companies that we work with generaly
use object-oriented frameworks as componentsin
their software product line. The advantages of using
object-oriented frameworks is that it dlows for
coarse-grained components and yet supports
considerable variability for each instantiation of the
framework. In [Bosch 00], we di stingui sh a number
of different goproaches to using object-oriented
frameworks, i.e. the system-specific extension
model, the standard specific extension model, the
fine-grained extension model and the generator-
based model.

The software architecture and set of reusable
component that are part of the product line are
deployed during system devel opment. The intention
isthat the effort required for the devel opment of
systems should be decreased drasticaly by using the
architecture and component as abasis for the
system. The instantiation of systems based onthe
reusabl e assets in a software product line consists of
seven steps, i.e. requirement specification, system
architecture derivation, family component selection
and instantiation, development of product-specific
components, system integration, system validation
and, finaly, system packaging and release. Below, a
selection of these steps is discussed.

Software architecture derivation is concerned with
configuring the product line architecture based on
the system requirements, leading to aproduct
software architecture. The configuration includes
the addition and remova of components and
relaionsinthe architecture.

Component selection and instantiation is concerned
with the product line components that will be used
in the system under devel opment. The instantiation
may consist of two parts, i.e. straight-forward
configuration of the component and the

devel opment of product-specific component
extensions. Configuration includes activities such as
parameter setting and defining input specifications
to code generators. The devel opment of product-
specific component extensions occurs typicdly
when using white-box framework as acomponent.
Inthat case, the component architecture and its
generic behaviour have been defined, but the

system-specific code needs to be added by the
software engineers devel oping the actua system.

Findly, it may be necessary to devel op product-
specific software. The product line components do
not necessarily implement dl product requirements.
The subset of the requirements that is not fulfilled
by the product line must be implemented by
product-specific software. This software is not part
of the product line, but only included in the source
code for the specific system. When using the
evolutionary gpproach to devel oping aproduct line,
the product- specific software may provide useful
hints about likely useful extensionsto the
functionality supported by the product line.

Once thefirst versions of the product line
architecture, the set of components and the set of
systems have been devel oped, the evolution of al
these assets will become the primary activity.
Evolutionis, up to some extent, similar to

devel opment, but the presence of assetsisamgor
complicating factor. The evolution is initiated by
new requirements on existing systems and by new
systems that need to be incorporated in the product
line. Evolution caused by the new requirements
takes place on dl assets, i.e. architecture evolution,
component evol ution and system evolution. Archi-
tecture evolution is concerned with changes to the
components that make up the product line
architecture, changes to the relaions between these
components, etc. Component evolution is concerned
with the incorporation of new and changed
requirements on the component functionaity which
generdly affects the component internd's, but may
aso affect the component interface, which causes
effects on the architecturd level.

Product evolution may express itself intwo ways.
Traditiondly, systems evolve through subsequent
versions that incorporate new requirements. During
recent years, anew type of system evolution can be
identified, i.e. run-time evolution. Systems or
products that have been shipped to customers can be
upgraded with new components or new versions of
existing components. However, each individual
instance of the system may have its own
configuration of older and new component versions.
Run-time evolutionis dso referred to as dynamic
architecture.

We have identified four organizationa modelsfor
software product lines. Below, we discuss, based on
our experiences, the gpplicability of the model, the
advantages and di sadvantages and an example of an
organization that employs the particular model.

Development department: In this model
software development is concentrated in a
single devel opment department, no
organizational specidization exists with either
the software product line assets or the systems
inthe family. The model is especidly suitable
for smaler organizations. We have seen
successful instances of this model up to 30
software engineers. The primary advantages are
that it is simple and communi cation between
staff membersis easy, whereas the
disadvantage is that the model does not scae to
larger organizations.

Business units: The second type of
organizationa model employs aspecidization
around the type of systems in the form of
business units. The business units share the
product line assets and evolution of these assets
is performed by the unit that needs to
incorporae new functiondity in one of the
assetsto fulfil the requirements of the system or
systemsit is responsible for. Three dternatives
exist, i.e. the unconstrained model, the asset
responsibles model and the mixed responsihility
model. The model is often used as the next
model in growing organi zations once the limits
of the devel opment department model are
reached. Some of our industrid partners have
successfully applied this model up to 100
software engineers. An advantage of the model
isthat it dlows for effective sharing of assets
between a set of organizationd units. A
disadvantage is that business units easily focus
more on the concrete systems rather than on the
reusabl e assets.

Domain engineering unit: Inthis model, the
domain engineering unit is responsible for the
design, development and evol ution of the
reusabl e assets, i.e. the software architecture
and the components that are make up the reusa
ble part of the software product line. In
addition, system engineering units are
responsible for developing and evolving the
systems built based on the product line assets.
The two aternatives include the single domain
engineering unit model and the multiple domain
engineering units model. Inthe latter case, one
unit is responsible for the product line
architecture and others for the reusable software
components. The model iswidely scaable,
from the boundaries where the business unit
model reduces effectiveness up to severd
hundreds of software engineers. One advantage
of this model isthat it reduces communiceation
from n-to-nin the business unit model to one-
to-n between the domain engineering unit and
the system engineering units. Second, the
domain engineering unit focuses on devel oping
generd, reusabl e assets which addresses one of
the problems with the af orementioned model,

i.e. too little focus on the reusabl e assets. One
disadvantage is the difficulty of managing the
requirements flow and the evol ution of reusable
assets in response to these new requirements.
Since the domain engineering unit needs to

ba ance the requirements of al system
engineering units, this may negatively affect
time-to-market for individua system
engineering units.

Hierarchical domain engineering units: In
cases where an hierarchica product line has
been necessary, dso ahierarchy of domain
units may be required. The domain engineering
units that work with specidized product lines
use the top-level assets as abasis to found their
own product line upon. This model is
gpplicable especidly inlarge or very large
organizations with alarge variety of long-lived
systems. The advantage of this model isthat it
provides an organi zationd model for effectively
organizing large numbers of software
engineers. One disadvantage is the
administrative overhead that easily builds up,
reducing the agility of the organization as a
whole, which may affect competitiveness
negatively.

Finally, we have recognized anumber of additiona
factors tha influence the organizational model that
isoptima inaparticular situation. These factors
include geographicd distribution, project
management maturity, organizationa culture and
the type of systems.

We have studied and cooperated with severd
companies that employ asoftware product line
goproach. We discuss experiences of these
companies and the issues that have been
encountered by the steff a these organizations.
These experiences and issues have been organized
into organizationd, process and technol ogy issues.

Organizationa topics that need to be addressed
include, among others, the increased amount of
required background knowl edge by software
engineers, the lack of management support for long
term godss, the questioned need for domain
engineering units, the difficulty of selectionthe
appropriate organi zational model, the time-to-
market pressure against the quaity of the reusable
assets and the lack of economic models.

Process issues that were identified by the companies
involved in the case studies include the importance
and difficulty of information distribution between
business units, the difficulties associated with

mai ntai ning up to date and accurate documentetion,
effort estimation problems, especidly when

designing reusabl e assets, and the scoping of the
software product line.

Severd issues related to technology were identified,
including the need for multiple versions of reusable
assets, the increasing number of implicit
dependencies between components during
evolution, the difficulty of using componentsin new
contexts, the lack of appropriate tools support,
feature scoping, early intertwining of functionaity
and the lack of encapsulation boundaries and
required interfaces.

Concluding, software product lines can and are
successfully applied in software devel opment
organizations, ranging from small to large. These
organisations that we studied are struggling with a
number of difficult problems and chalenging issues,
but the genera consensusis that a software product
line gpproach is beneficid, if not crucid, for the
continued success of the organisations.

Conclusion

Software product lines are present an gpproach to
achieving pervasive, company-wide reuse of
software assets. Different from earlier proposed
approaches to achieving software reuse, software
product lines are aready successfully goplied by a
variety of software development organizations. The
principles underlying software product lines do not
only apply to companies devel oping products, but

a so to software consultancy companies and IT
departments. The advantages of using software
product lines include drastic decreases in software
development and evolution cost, time-to-market and
staff numbers. However, adopting a software
product line approach must be astrategic decision
because it affects the business model, the
organization, the processes and the technology
associated with software devel opment.

Inthis article, we have presented an overview of the
main processes and issues associ ated with software
product lines. The main steps while adopting a
software product line gpproach include the design of
asoftware architecture for the product line, the
devel opment of the reusable components and the
derivation of the products that are part of the family.
Once the software product line has been initiated,
the evolution of dl the af orementioned assets
becomes the main challenge. We have discussed a
number of organizationd models that can be
adopted for software product lines. Findly, the
experiences collected from anumber of companies
that have applied software product line principles
for severd years have been presented.

[Bosch 00] J. Bosch, Design and Use of I ndustrial [Szyperski 97] C. Szyperski, Component Software

Software Architectures (working title), Addison - Beyond Object-Oriented Programming, Addison-
Wesdey L ongman (forthcoming), ISBN 0-201- Wesley, 1997.
67494-7, June 2000.

Jan Bosch is Professor of Software Engineering at the University of Karlskrona/Ronneby in Sveden. Heis
author of * Design and Use of Industrial Software Architectures’ to be published June 2000
Jan can be contacted at 'Jan.Bosch@ipd.hk-r.se'

RATI O I S P R OUD T O S PONSOR

RATIO The 1% International Conference on
eXtreme Programming and
the Flexible Processes in
Software Engineering

XP2000

Cagliari, Sardinia, Italy

21 - 23 JUNE 2000

KEYNOTE PRESENTATIONS TO INCLUDE:

Kent Beck Martin Fowler
Extreme Programming Refactoring Techniques
For Beginners

Ron Jeffries
User Stories and the
Planning Game

Ralph Johnson Alistair Cockburn
Framework Devel opment Designing a Light

and XP Methodology

aswell as...

WORK SHOPS ¢ PANELS ¢ TECHNICAL PAPER PRESENTATIONS
Led by Software Devel opment Lab Responsibles of Daimler Chrysler, Ericsson, Hew ett-
Packard, Motorola, Semens, Sun Microsystems, etc.

Visit http://numa.sern.enel.ucalgary.ca/extreme
for full conference program and registration detals

Object/Component Architecture Series
The Topsy Turvy World of UML

Hubert Matthews and Mark Collins-Cope discuss a visual metaphor mismatch that
inhibits OO designersthinking architecturally.

Diagrams are acommon way of writing down and
communicating ideas. We use them for al sorts of
things — road maps, wiring diagrams, UML class
diagrams, etc. One common feature of diagramsis
that dl parties must understand the meaning of the
symbols being used — blue roads represent
motorways on most road maps, for instance.
Communicationis difficult without this shared
knowl edge, as one has to ask what asymbol means,
how isit different from some other symbol, and so
on. Thus at first we need some form of legend or
rubric to help us decipher the symbols.

Once we have assimilated the symbols we can start
to search for their meaning. Thisinvolves
understanding how and why they are connected in
that particular way. One great aid to comprehension
isto have standard conventions — maps traditionaly
have North towards the top, circuit diagrams have
inputs on the left and higher voltages at the top.
Thisiswhat we're used to and it helpsto orient us.
Breaking these conventions slows us down and is
usud ly counter-productive.

What happens, however, if two related diagramming
conventions contradict each other? Let's ook at
UML class diagrams and architectura diagrams.

UML class diagrams, used to show the static
structurd aspects of object-oriented designs,
traditionaly have superclasses towards to the top of
the page and subclasses drawn underneath them, as
follows:

Context

——»

—

Child1 Child2

Figure 1. Class diagram showing inheritance
relationship

The inheritance relationship in the class diagram
(Figure 1) is sometimes referred to as specialisation.
Thisis aclue to one of the conventions of the class
diagram: more specidised things are shown towards

the bottom of the diagram. The reasons for this
convention are probably rooted in the way we talk
about them: "the AbslFis a ahigher level of
abstraction, its subclasses a alower level."

Architecturd diagrams, such asin Figure 2 below
(an older notation), sometimes used to show the
layering of the software in asystem, show the most
application specific layers towards the top of the
diagram, and we talk about them accordingly: "this
software is built on top of our persistence
framework, whichisin turn built on top of the
underlying platform software..."

I
- — [

Daily checks|

N

Customer

Financer |

N

Account

A

1

persistence

1
RDBMS

Figure 2. Layered Architecture

Now this would be abig "so what" if it were not for
one important fact. The two types of diagram show
us different views (or levels of detail) of essentially
the same thing: the structure of our software. Let's
try super-imposing aUML class diagram and an
architecturd layering diagram on top of each other
(with thanks to the Gang of Four's Factory Method
pattern for the example):

higher architectura
layer

product

A A

concrete
product

concrete
creaor

lower
architecturd

layer

Figure 3. Super-imposed UML class diagram and
architectural layering diagram

Something is clearly wrong here. We've got the
abstract classes in the more gpplication specific
higher architectura layer - whenin fact they should
be inthe lower layer - being more generic and re-
usabl e than their concrete derivatives; and the
software dependencies go upweards, rather than
downwards as implied by the standard architectura
convention.

Reworking the diagram, reversing the common
UML convention, we get the following:

higher architectura
layer

concrete
product

AR

concrete
creaor

Al

[

[

lower
architectura

layer

Figure 4. Figure 3 reworked, reversing the common UML convention

The two diagram types can now be seen to
complement and reinforce each other perfectly. At
the lower architecturd level (perhaps alevel
indicating re-usable infrastructure) we have the
abstract product and creator classes. At the higher,
more application specific (and less re-usable) level,
we have concrete redisations exploiting the
infrastructure provided. It al makes perfect sense -
and we may even have gained an additional clarity
onwhy we were using the factory patternin the first
place!

So, two conventions, both pervasive in the industry,
are clearly at direct odds with each other - causing a
visud metgphor mismatch that we believe inhibits
broad architectura thinking during design. Since
adopting the highest is most specific convention
when using class diagrams, we have found alot of
our design and architecture thinking has clicked
rather neatly into place, visualising and organising
architectura dependencies has become easier, and
we've got amuch clearer view onwhat it means -
architecturaly - for acomponent or package to be
re-usable. Copernicus would have been proud :-)!

Mark Collins-Cope and Hubert Matthews undertake design and ar chitecture consultancy for Ratio Group.
They can be contacted on +44 (0)20 8579 7900 or by email at * markcc@ratio.co.uk’ or
‘hubert@ratio.co.uk’ .

The diagrams presented above are taken from Ratio's 2-day Component-Based Development using UML
training course. Further details of this course can be obtained by emailing ‘info@ratio.co.uk’ or calling the
contact number above.

OPEN isthe Objective

Author Brian Henderson-Sellers introduces the
OPEN Development Process...

| What is OPEN?

OPEN is athird-generation, full lifecyde, process-
focussed, object-oriented methodological approach
that isidedly suited for component-based
development as well as object-oriented software
devel opment. OPEN stands for Object-oriented
Process, Environment and Notation andisin the
public domain. OPEN in fact defines aprocess
framework that can be (and is meant to be) tailored
to specific projects, specific organizations, specific
skills sets and so on.

|~ |
The
OPEN
Toolbox of
Teshniques
Let's take each of those itdicized adjectives in my
first sentence in turn and return to the framework
issue at the end.

OPEN is an object-oriented (OO) methodol ogical
approach. Whilst there is some discussion about
exactly what a software devel opment methodol ogy
isor should be, it is generdly agreed that it should
encompass rules, suggestions, heuristics, guidelines
etc. for building software systems. Indeed the
number of elements and its structure can be quite
complicated (Figure 1).

KEY
I_LI aggregation
(]

dass

METHODOLOGY

association/
mapping

&

PROJECT
MANAGEMENT

TOOLS &
TECHNIQUES

MODELLING
LANGUAGE

MODELLING
PROCESS

STANDARDS

METAMODEL

T

WORK
PRODUCT

NOTATION

MODELS

PROCEDURE

Figure 1. What is a method? (redrawn from Grahamet al., 1997)

Many methodol ogies focus very much on the rules,
tips and techniques for modelling but do not address
the larger scd e issues of people (rolesin Figure 1),
process, project management, quality assessment,
metrics, standards and so on. A good methodol ogy
should do dl of these.

Methodol ogies, often simply cdled methods, have
been around along time; but it is only since around
1990 or so that they have been available to support
object-oriented devel opment. An object-oriented
goproach relies on the notions of abstraction, strict
modul arization & information hiding and

polymorphism. Requirements, design and code al
use the same model of the "object” which

encapsul ates together state and behaviour with a
tightly controlled interface. The initid emphasisis
always on the "what" not the "how" within the
devel opment lifecycle. With this more holistic view
of modelling and software design, it is beneficid to
ask about the high-level responsihilities that an
object has: responsibilities for doing, for knowing
and for enforcing. In later design and coding, these
are translated into methods of the classes. Whilst
using aresponsi bility-focussed gpproach is found
useful, object orientation can aso give good results

using a data-driven approach or ause case driven
method, depending on the particular problem and
problem domain.

OPEN is athird-generation OO methodology. The
first OO methodol ogies, created about 1990, were
primarily tips and techniques rather than true
methodol ogies. However, they are often referred to
asfirst generation OO methodol ogies. They were
constructed by individua s or smdl groups. They
were used in pilot projectsinindustry andin
teaching. By about 1994 two things were happening.
Methodol ogica writing increased so thet the
origind methodol ogy devel opers of 1990, aong
with an increasing number of others, started to read
widely and incorporate good ideas from awide
variety of sourcesintheir own methodologies. The
methodol ogies began to look more and more like
each other, supporting common ideas and common
principles. Once published, these became known as
second generation methodologies. Typica examples
are Booch's 1994 gpproach, the SOMA approach
and MOSES (the last two being direct precursors of
OPEN). Despite the publication and teaching of
these second-generation methodologies, it soon
became clear to these methodologist authors that the
software industry in generd still seemed reticent to
adopt their ideas. One reason was perceived to be
the lack of support in the sense that second-
generation methodol ogies were still under the
control of only one person or, & best, asmal group
of people. Furthermore, CASE tool vendors found it
difficult to support such alarge number of
methodol ogies. In addition to good tool support, for
largesca e industria usage, anindustrid user needs
to be sure that, if one provider of support vanishes,
there will remain adternative sources. Thisledto the
active collaboration of methodol ogists in order to
create third-generation methodologies. Begunin late
1994, OPEN isthe premier example of athird-
generation methodol ogy, created by the
collaboration of over 30 methodol ogists,
researchers, tool vendors and practitioners
worldwide.

OPEN is afull lifecyde methodol ogy. Software can
be considered to have alifecycle from hirth to death.
The need for software can arise when business
problems need solution. So the first step (the birth)
occurs when abusiness problem is identified. This
isaproblem which must be clearly enunciated. And
athough a software solution is not mandated at this
stage, for those problems that do |ead to a software
solution, the requirements engineering activity,
which focusses on the el ucidating the business
problem, is clearly avitd part of the software
lifecycle. Business decision making, requirements
engineering and systems analysis are dl "early
lifecycle" activities. OPEN includes tasks and
techniques which are useful inthese early stages.

Few other OO methodol ogies pay more than lip
service to these more business-focussed issues. Yet
inthe red world, if technology (here object
technology or OT) isto be relevant to commercia
environments, an OO method must consider these
early lifecycle issues and not just assume that the
lifecycle begins with the handing over of aclearly
and uniquely defined requirements definition to the
software devel oper.

Similarly, amethodology should cover the late
lifecycle activities. Whilst most are good & program
design and coding, they tend to tail off intheir
coverage of issues such as deployment and user
training and future enhancements/maintenance. It is
just as important that a method addresses these
issues, perhaps using testing metrics to do fault
detection and usability studies to eva uate customer
acceptance of the delivered product, for instance.

OPEN is aprocess-focussed methodology. Process
is the key to good software devel opment practices.
It imposes order and rigour. A process, of any sort,
tells you how to take certain stepsin order to
accomplish aspecific task or god - to get something
done. Taking steps involves ordering those into
some sequence because we live in atempord
universe and, as individua's, do not live concurrent
lives. A process offers arepeatabl e and manageable
underpinning to software development. It has been
called "documented decision making" and equated
to workflow description.

Different problems, architectures, people,
organizations etc. need different process models -
for example, waterfal, spira and recursive/pardlel;
whether the project isthefirst of itskind or a
variation on atheme; whether the focus is aone-off
devel opment or whether the creation of reusable
assetsis of mgor concern.

Some software devel opment seems to occur ina
very ad hoc fashion. When successes occur, the
underlying reasonis not obvious and there is no
means to identify how to repeat the success. And
conversely, when failures occur (as they inevitably
will inan ad hoc devel opment shop), thereis no
way of identifying how to fix the process and learn
from the failure and avoid arepeat falure inthe
future.

A process of any sort lays down some guidelines to
help devel opers set their own (persond and team)
standards that they can follow. It is then possible for
other personnel to temporarily or even permanently
take over arole and for managers to control,
monitor and eva uate how well the development is
progressing towards completion. A process thus
identifies activities that need to be done, probably
recommends means by which to achieve these gods

and, most importantly, creates a sequence (or aset
of sequences) which alows tempord planning.

Processes may be in anindividud's head or may be
written down as an organizationd (or internationa)
standard to be followed on each project. They may
be large or smadll; "authoritarian” or flexible.
Perhaps of greater importance is whether the
process is sufficiently mature to provide for
repetition. In other words, if | say | am applying a
process, do | gpply it the same way the second time
and woul d a second person applying this same
process have the same result as me? The different
answer's to these questions are ably captured in the
five-level framework known as the Capability
Maturity Model or CMM. This framework eva uates
the maturity of an organization's processes. Level 2
organizations utilize processes (Level 1 does not)
but these processes are not written down and
therefore highly individudistic. CMM Level 3is
generaly regarded as the lowest level inwhich the
use of process even approaches being satisfactory
(from asoftware engineering viewpoint). At Level
3, the processis institutionaized and used on each
project. It is documented and is repeatable. When
we tak about OO process, we generdly assume that
the organi zation undertaking the OO software

devel opment conformsto at least CMM Level 3. On
the other hand, an organization a Level 1 or 2 could
raise themselvesto Level 3 by adoption of the types
of OO process discussed here.

| terative, | ncremental and Parallel
Lifecycle Processes

In an OO devel opment environment, many of the
traditiona process and associated project
management techniques are applicable. However,
there is one mgor constraint that can dter this. This
isthe recognition by al OO devel opers, consultants
and mentors thet the process lifecycle for an OO
devel opment must be: (i) iterative (ii) incrementa
and (iii) pardlel.

Aniterative lifecycle is one which occurs severd
times. In contrast, the traditiona waterfdl lifecycle
dictates that you follow anumber of steps (often
caled phases) sequentidly and once any given step
iscompleted - it is never returned to. In an iterative
lifecycle, there is often some sequentidity but, after
steps are completed, they are often returned to for a
further iteration. Iterations are thus "circular” -
athough thisis no excuse for rapid prototyping and
hacking. Iterations need to be planned and to go
across dl lifecycle stages (user requirements
elicitaion, anaysis, design, code and test).

Incrementa delivery islinked with the iterative
approach to some degree in that an OO devel opment
should deliver products to the users incrementaly,
usudly & the end of each iteration, possibly every
few weeks. Incrementd delivery keeps the customer
in the loop, ensuring that they dways have in their
possession adelivered and running version whichis
at worst afew weeks old. They can thus give
immediate feedback rather than waiting for aone-
time delivery of the full system perhaps as much as
three years after they first made the request for its
devel opment.

Findly, OO supports apardlel lifecycle inthat the
full software system awaiting devel opment can be
easily broken down into packages or subsystems.
Because of the high degree of modularity
supportable in an OO development, it isrelatively
easy to ensure that these severd packages can be
devel oped essentidly independently of each other.

OPEN's Process Framework

As athird generation OO methodol ogy, one of the
prime purposes of devel oping OPEN was to provide
auseful and usable "standard" software

devel opment process. OPEN has many elements:
process, model ling, management, measurement and
so on. There are two levels of processin OPEN: the
Software Engineering Process (SEP) and the
modelling process (Figure 2)

EXCELLENCE IN SALESAT RATIO GROUP

recruitment is essentid.

Our mission - to be the U.K. brand leader for Object-Oriented related services. To achieve this we
need to take on more high caibre saes staff. Current vacancies include:

Training Sales Executives to sell our OO related training products to both new and existing
customers. Saes experience essentid; exposure to OO or similar technologies highly desirable.

Recruitment Executives. Some exposure to OO is desirable. Experience in IT

Positions are based in Eding, West London. We'll pay acompetitive base sdary, agood
OTE (£45 to £50K) based on redistic targets, and we have no earning cgp on commission.

For further details, or to submit CVs please contact Kate Harper on +44 (0)20 8579 7900
or email her via kate@r atio.co.uk

SOFTWARE
ENGINEERING
PROCESS

clas

Q

aggregation

association

KEY
1
ILI

PEOPLE/
ORGANIZATIONAL
CULTURE

METHODOLOGY

TOOLY
TECHNOLOGY
AVAILABLE

&

MODELLING

<
TECHNIQUES PROCESS

MODELLING
LANGUAGE

-

WORK
PRODUCTS

Figure 2. A software engineering process encompasses methodol ogy, people/organizational culture and
tools & technology available. I n turn, methodology consists of, primarily, lifecycle process, techniques
and representation.

The modelling process assists with identifying how
things change with time and what work products
should be created and when. It isacentra part of
the methodol ogy, which is objective (i.e.
independent of people) and can be written down.
The modelling process is just one component of the
methodol ogy.

The second process element of OPEN isthe
Software Engineering Process or SEP which brings
together the methodologicd element in the context
of one or more individuas in the team, as well as
taking into account organizationd culture and
organizationa standards and the technol ogy
available. Thisisthe "rea" process in the sense that
if thisfals so does the project and ultimately the
product. Whilst amodelling process can be codified,
it reliesonred people to make it effective. Different
people have different skills sets and varying
experience. The organizationd culture dso hasa
bearing here. Using aprocess that is very
authoritarian in an organization that is very
collegiate inits culture can be adisaster.

Similarly, the effect of available technology is
evident. If the project mandates a high degree of
traceability and version control then atool that does
code generation and reverse engineering may be
cdledfor - for instance, using adrawing tool that
only supports dataflow diagrams makes it difficult
to design with an OO mindset.

There are thus amyriad of variables in any software
devel opment project: tools, programming languages,
people, processes, qudity gods, sizeandso on. It is
not possible to use aone-size-fits-al SEP. Larger

projects require more project management; smaler
projects can compress the timescaes of
requirements anaysis/design/code into days or even
hours without the need for detailed project
management. University projects have needs for
intensive activities interspersed with relative lull.
Thisiswhere the tailorability of OPEN comesto the
fore.

Clearly, asingle, "out-of-the-box", pre-tailored
process is inadequate. What is needed is aprocess
framework which establishes the overall
architecture of the process while still permitting
choice a the detailed level. Making those choices
and constructing one specific OPEN-compliant
processis cdled process taloring or process
engineering. It permits one process framework to be
instantiated to create severd project-specific and
talored processes.

When discussing amethodol ogy, it is common to
divide up the lifecycle which the methodol ogy
advocates into chunks. Traditiondly these have
been caled phases. So we tak of the "andysis
phase” or the "design phase”. For alinear lifecycle,
like the traditiona weterfal model, thisisfine.
"Phase" sounds like you compl ete phase n before
progressing on to phase $n+1$. You can then factor
in milestones, work products, test criteriaetc. quite
nicely a the end of each of these severd phases.

However, if we adopt amore flexible lifecycle
model, such as the spird, fountain or contract-
driven lifecycle (OPEN will support any of these but
favours a contract-driven lifecycle), thenwe are
better able to support those difficult-to-manage ams

of iteration, incrementd delivery and pardlel

devel opment. These are agreed as being the optimal
way of building OO software. Once we alow for
iteration, we must permit the development team to
move on from design to andysisi.e. gpparently a
"retrograde step". The word phase now seems
inappropriate. One commonly used word (and one
used in OPEN) is"Activity" (Figure 3).

PROCESS

1..n

ACTIVITY

Figure 3. A Process can be modelled as being
made up of a number of Activities.

Activities are, like phases, chunks focussed on
doing things. In addition, they say "what" is to be
done but not how it is to be done. On the other hand,
they lose the tempord sequencing implication of
phases so we now need to add back somewhere the
notion of sequencing rules. In OPEN, when using a
contract-driven lifecycle, these are added as pre- and
post-condition on the activities thought of as
objects. This gpplies the programming by contract
ideas to the very description of the process and
resultsin aprocessthat isitself object-oriented.

Activities are generally largesca e descriptions of
what is to be done. They are longterm objectives but
are difficult to manage because of their potentia
duration. To manage the "what", afiner
discrimination is needed. In project management
parlance, aTask is the smalest unit of work which
can be eva uated as either complete or not complete.
Tasks are thus smaller scde "jobs to be done"
associated with each of the activities in the lifecycle.
But tasks don't say "how" the jobs are to be done.
Thisistherole of the Technique (Figure 4).

KEY
D class

1

SOFTWARE
ENGINEERING
PROCESS

aggregation| <>

STATE
MACHINE

/

= associdion

1-n

{'sequenced

collection}
WORKFLOW

ACTIVITY

| /

WORK PRODUCT

@

1-n

PRODUCER

A

helpin
buildin

'are

by

Assertionsproduce
sequencing

ASSERTION

sequenced

TECHNIQUE

Figure 4. The SEP has many elements: including Activities, Tasks, Producers,
Work Products and Techniques.

The technique describes in full detail how we might
use object technology, object-oriented concepts and
years of experience of usersto accomplish the Tasks
we have set ourselves. Since techniques are just
ways of doing things, they can be thought of as the
"tools of the trade". Just as the tools of the trade of a
plumber include hammers, screwdrivers and
wrenches, the tool s of an object technologist include
knowl edge about the use of , for instance, CRC card

modelling, aggregation modelling, OO team
building [There are over 150 techniques
documented in the book The OPEN Toolbox of
Techniques so we won't list them dl here.].
Similarly, the vaue of aplumber isthe knowledge
and experience in choosing which of the
screwdrivers and wrenches are needed to solve any
particular problem. Just so for the object
technologist who needs to be able to choose the best

OO technique to accomplish the specific OPEN
Task being worked on. Choosing the correct
technique is largely amatter of experience, red or

surrogate. The latter is encgpsulated in the OPEN
tailoring matrix shownin Figure 5.

>
O
m

For each Task/Technique
combination, one of the five levels

TECHNIQUES

=
L RPOOONOUAWN R

- MOXUUTIMTMUUEZ
- 00U0ZLTMZLOo000OTM
- MOXWUZTIOUOOTT
OXXOOOTMTMOUOUT

of probability (from Always to
Never) is chosen as appropriate.

5 levels of possibility

M = mandatory

R = recommended
O = optional

D = discouraged
F = forbidden

Figure5. Matrix. A core element of OPEN is a two-dimensional relationship between tasks and techniques.
Each task may require one or several techniquesin order to accormplish the stated goal of the task; and
techniques may be applicable to several tasks. For each combination of task and technique, an assessment
can be made of the likelihood of the occurrence of that combination. Some combinations can be identified as
mandatory (M), others as recommended (R), some as being optional (O), some are discouraged (D) but may
be used with care and other combinations that are strictly verboten (F = forbidden). Filling in the matrix
valuesisan important part of the lifecyd e tailoring Task in OPEN (adapted from Grahamet al., 1997)

This matrix [A similar matrix is usedto link
Activities and Tasks.] represents the redity that it is
not just one Technique that is useful for each Task.
Any chosen Technique may in fact be useful to help
fulfil severa Tasks. Conversely, any chosen Task is
likely to need the use of more than just the one
Technique. Part of this many to many linkage is
because there are, in fact, many "duplicates" in
OPEN's toolbox. For example, there are severa
techniques for finding objects. Some OO software
devel opers start by atextud anaysis, some use
simulation, some use CRC cards and yet others
prefer ause-case driven beginning to asoftware
project. It is your choice.

Activities performed iteratively by means of aset of
tasks result in work products. Work products are the
documents, including software, that are produced
either for interna inspection or for externd

eva uation and find delivery/use. In OPEN, these
artefacts are delivered as part of the post-condition
of the Activities. However, since the lifecycleis

iterative and incrementd, often the delivery is only
partia (but planned that way). Delivery may be to
other members of the team, to the manager or to an
externad party, such as the end-user/customer. It
needs to be made clear to the recipient of each work
product just what proportion of the fina delivery is
being made in such anincrementd lifecycle. Thus
work products are built up over severd iterations
but linked to the activities. They are not created by
the activities directly but rather by the techniques
used to redize the tasks of the activity. Any one
work product can therefore be the result of the
gpplication of severd techniques spread over severd
iterations.

As we have seen (Figures 3 and 4), the overall
architecture of OPEN is that of anumber of
Activities which are connected together in aflexible
and tailorable way to form an OPEN process which
is one specific instantiation from the OPEN process
framework (Figure 6).

Email us at objective.view@ratio.co.uk to subscribeto

ObjectiveView for electronic or hardcopy delivery.
(type 'subscribe’ in subject line)

OO Development

Process
T ~ .<<instance of >>

istailored ~ OO Development
to meet the needs of Process Framework

a spegific <>
|

8

Instantiation
Guidelines

7

describe how
tousethe

1

ClassLibrary of Predefined
Process Components

1.

Producers

roduce perform
/p N o
*
1. 1x
Work [———

Products | 1.*

create, ———|Work Units
evaluate

or document

Figure 6. The structure of a development process framework
(diagramsupplied by D.G. Firesmith, 1999)

The way these Activities are put together will lead
to slightly different versions or instantiations. Each
Activity is represented by an object in the process
description (Figure 7) and these are connected

together by lines representing potentid transitions
that the user(s) of the process can make (an example
pertinent to MIS domains is shown here).

Project initiation

Requirements
engineering

Andysis &Business
Model refinement

. Project planning

Build iteration

Extra-project
odelling, X3 activities & Reuse
Implementation

management
- & Testing

Implementation Consolidation

planning

¥ Eval uation
Time boxed activity object

Key: (> Unconstrained activity object
_» Guarded transition between tasks

Figure 7. The contract-driven lifecycle for a single project in an Ml Sdomain.

The devel opment proceeds as suggested by these
lines but only when the post-conditions of the
current activity have been met. These should be
specified clearly and should include testing criteria,
document delivery, model building criteriaetc.
Once these have been satisfied, then the

devel opment team may move on to another Activity
- agan assuming that the pre-conditions of that next
Activity have been achieved. These might be that
certainwork products are available, that acertain
percentage of the system has been designed, that
certain signoffs have been made etc.

The part of amethodology that then alows you, the
devel oper, to deliver documentation and other
artefacts, including the find code, must include a
modelling language (Figure 2). A modelling
language is ametamodel plus anotation. The
metamodel is essentidly the set of rules that say
what you can and cannot do with the language
elements, which are themsel ves represented
graphicdly or textualy (the notation). One well-
known modelling language is the Unified Modeling
Language which was endorsed by the Object
Management Groupinlate 1997. UML tends to be
more pragmatic than some other modelling
languages [Such as OML (OPEN Modelling
Language) whichis compatible with UML but
offers some useful extensions.] and more digned
with hybrid approaches such as C++, Javaand
relationa databases. Together, the metamodel and
notation will be the tools you use to depict the
results of modelling and coding as you build
software. Understanding of the metamodel is the
read m of methodol ogists and CASE tool builders;
software devel opers do not generdly need to see the
metamodel itself. If the methodol ogists get the
metamodel right and the CASE tool vendors
implement it correctly, then you have access to fine
toolsto increase your quaity and productivity.

Findly, we need to expand alittle on the statement
that OPEN is suited for component-based

devel opment. Devel opment in the new millennium
will incorporate distributed architectures amost by
default. With the advent of the internet and
industrid strength middieware to support distributed
architectures, a good methodol ogy has the
responsibility of providing the detailed process of
architecting and designing fully encapsul ated
components that can be deployed over acompany's
network or on the web. OPEN provides detailed
support for such applications.

I nternational Support for OPEN

Support for OPEN isinthe form of aninternationd
group of researchers, consultants, CASE tool
vendors and academics who are responsible for
devel oping and maintaining OPEN. As of August

1999, there were 37 members worldwide including
authors such as myself, lan Graham, Don Firesmith,
Meilir Page-Jones, Tony Smons and Houman
Younessi. All materid is public domainandis
distributed viabooks and articles many of which are
directly downl oadable from the website at
www.open.org.au or one of the mirror sites.

The Consortium itself does not market any products
or services, dthough individual members may be
connected with companies that do so. In fact, we
prefer to work with third party companies
worldwide who can offer locd and continuing
support. This can include support for training,
mentoring, consulting and tool distribution. These
sources are dl advertised through the website.
Contect them directly or ask the folks a Ratio for
further detals.

The beauty of the OPEN processisthat it isnot a
straitjacket that |ays down the law on what you shall
and shan’t do. Rather, OPEN is aprocess
framework that can be tailored by individua
organizations in away that suits them. Taloring
requires choosing specific Activities, the way
Activities are interlinked and Tasks gppropriate for
those Activities together with compatible and
effective Techniques. All the elements from which
to choose and tail or your own OPEN-compliant
methodology are inthe full texts on OPEN (see
Suggested Further Reading section below).

Furthermore, while OPEN encompasses an iterative,
incrementa and pardlel process, which

should, of course, form the mainstay of any OO
software devel opment approach, it leavesit upto
the users of the processto choose the lifecycle style
(e.g. spird, waterfdl, fountain, contract-driven) and
to express their work products in whatever
modelling language they see fit and relevant to their
devel opment environment.

This tailored version of OPEN thus fits your
company requirements "like aglove” whilst still
being in accord with the overall OPEN "standard".
Hexibility brings ownership - amgor objective
redized!

Suggested Further Reading on
OPEN

Most of the papers on OPEN are available for free
download from the OPEN website at
http://www.open.org.au with mirrors in Europe and
USA. Some sample chapters are aso available of
the books (see below).

The OPEN Process Specification, Graham, I,
Henderson-Sellers, B. and Younessi, H., 1997,
Addison-Wesley, UK, 314pp

The OPEN Toolbox of Techniques, 1998,
Henderson-Sellers, B., Smons, A.J.H. and
Younessi, H., Addison-Wesley, UK, 426pp +
CD

Documenting A Complete Java Application
Using OPEN, 1998, Firesmith, D.G., Hendl ey,
G., Krutsch, S. and Stowe, M., Addison-
Wesley, UK, 404pp + CD

OPEN Modeling Language (OML) Reference
Manudl, 1998, Firesmith, D., Henderson-
Sellers, B. and Graham, 1., Cambridge
University Press, New York, USA, 271pp

Requirements Engineering and Rapid
Development. An Object-Oriented Approach,
1998, Graham, |., Addison-Wesley, UK, 271pp
OPEN-ing Up UML: Modelling, 1999/2000,
Henderson-Sellers, B. and Unhelkar, B.,
Addison-Wesley, UK (in press)

The OPEN Process Framework. An
Introduction, 1999/2000, Firesmith, D.G.,
Henderson-Sellers, B. and Unhelkar, B.,
Addison-Wesley, UK (in press)
Object-Oriented Development Process
Framework Specification, Firesmith, D.G. et d.

(in preparation)

© 1999 Brian Henderson-Sellers
Brian Henderson-Sellersis Director of the Centre for Object Technology Applications and Research and
Professor of Information Systems at University of Technology, Sydney (UTS). He is author of eight books on
object technology and is well-known for hiswork in OO methodol ogies (MOSES, COMMA and OPEN) and
in OO metrics. Heis a frequent, invited speaker at international OT conferences.

UK RECRUITMENT BULLETIN FROM

RATIO

The most stimulating
OO jobs in the UK!

Ratio continuously has vacandies for IT professionalswith the following skills:
Object-Oriented Andysis and Design
Object-Oriented Architecture
Object-Oriented Devel opment in C++ and Java
Object-COriented Project Management
CORBA/DCOM

For internd roles within Ratio or to join one of our prestigious externd clients.
Both permanent (£40,000+) and contract (c.£1500/week) positions are available.

For more information regarding these opportunities, please cal Ratio on
+44 (0)20 8579 7900, or email us your CV a jobs@ratio.co.uk, or visit our
web site at http://www.ratio.co.uk for more detalls.

URGENT!!
PRE-SALES SUPPORT, OO, C++, JAVA, CUSTOMER FACING
HAMPSHIRE (C.£40,000)
UML DEVELOPERSWITH REAL-TIME EXPERIENCE, HAMPSHIRE (C.£30,000)

Ratio... We Know The Object

Interview with Robert C. Martin

=TT
.f'll'll'l

[FEETTT
i ruparon B
Tt ce Mimim

General

[Mark Collins-Cope] Bob, you've recently endor sed
Kent Beck's eXtreme Programming approach to
softwar e development. This may come asa surprise
to some as you've previously been a big advocate of
the use of UML as a design tool, or at least you've
written extensively on it, what would you say to
those who have been surprised in this way?

[Robert Martin] | would express my own surprise a
their surprise ;-). XP and UML are not mutudly
exclusive. | amstill aproponent of UML, and will
continue to use it and write about it.

XP is adevelopment process. It says nothing about
UML whatsoever. Some folks have taken this to
mean that XPers don't use UML to model their
ideas. However, thisis not the case. In XP, we do
create models; and we do design our software. And
we can use UML for those Designs.

XP does approach andlysis and design alittle
differently, however. The diagrams produced by
UML (or whatever modeling method you may be
using) are, with very few exceptions, ignored by XP
once they have yielded code. XP putsitsvauein
the code, and in the use cases; and ignores the
intermediate steps.

Process and Notation

[Mark] Processisa hot topicin the software
development community at present. We have RUP,
Open, Catalysis, XP etc., all of which seemto offer
something of a contradictory view of the world.
What is the average software developer or manager
supposed to make of this? Isthere such a thing asa
right and a wrong approach to software
development?

[Bob] Yes, thereis. The right approachis the one
that gets the job done with aminimum of fuss. Kent
Beck makes an astute observation about processes.
Process is aout managing fear. We put processes
in place because we are afrad. If our fear islarge,

eXtreme Programming

Mark Collins-Cope interviews Robert C. Martin, President of
ObjectMentor, Object Guru, Editor of C++ Report and author of
'‘Designing Object-Oriented C++ Applications using the Booch Method'

on his recent endorsement of XP.

we put big processesin place. If our fear issmall,
we put little or no processin place. The process that
isright for agiventeamisthe process that ba ances
their fears against their ambitions.

XP isaprocess for the ambitious team that wants to
get to market fast. XP manages fear by using
people methods rather than paper methods. In XP,
the fear of speedis mitigated by working in pairs,
writing lots of tests, communicating with the
customer on, & least, adaily basis.

[Mark] By managing fear | assume you mean fear
of project failure, bad design, etc. Haven't these
fears arisen for a reason - past failures for instance.
In which case, aren't there good reasons for having
well defined check pointsin the project lifecyde to
spot these failures before they become too big to
remedy?

[Bob] Checkpoints are agood thing. When
something is good, XP turns the knob up to 10.
That’s why it’s extreme. So we'll have checkpoints
every few minutes. We'll run tests every few
minutes to ensure the system still behaves properly.
WEe'll reconsider the design every few minutes and
refactor as necessary. We'll continudly re-estimate
our schedules and re-prioritize our plans so that

we’ re never working on out-dated assumptions.

[Mark] Would you call XP a RAD technique? Why?

[Bob] No. RAD techniques ded with fear by
assuming that the devel opers wish to be courageous
to the point of foolishness. XP isnot ahigh-risk
process. It goesfast, but it aso goes safe.

XP is dominated by tests. There are more lines of
test code written in an XP project than there are
lines of production code. Thetests are run every
time we make any kind of change. They tell us
when we have broken something. In XPitisillegd
to check in code that does not pass *dl* the tests.
Thus, the code never gets badly broken.

[Mark] UML now contains 8 notations. Do you
think UML has got a bit too huge and all
encompassing for its own good? Is the emer gence of
XP something of a backlash against thisand more
heavyweight process definitions? Is XP part of a
larger pendulumswing fromformality to
informality?

UML'ssize is not adetriment. Developers are not
honor-bound to use every bit of UML notation.
Rather, we can use only that which we need, and
ignore therest. Therefore, I'm glad that UML is
large, because it gives me alarge set of toolsto
draw from.

| think lightweight processes like XP are part of a
backl ash against huge formd processes. Processes
have been getting ever bigger and ever heavier for
the last decade or more; and without an obvious
increase in software quality to support the growth.
It's as though the software industry has said "Gee,
our big processes aren't giving us the benefits we
need; | guess we have to make them still bigger".

Many of us have fought against the increasing
corpulence of processes for years now. | think XP
is astatement from those of us who have had
enough of untamed process growth.

On the other hand, it would be amistake to think
that XP was amove away from either formality or
discipline. XP is code-centric; and thereislittle that
ismore formd that code. XP isdso highly
disciplined. The XP practices have very narrow
parameters. You can't just decide not to do them.

[Mark] So lack of processis not the reason for
softwar e failures that have motivated larger
process. Where would you pin the blame then?

[Bob] The processes in use today focus upon paper
rather than people. Paper can't think. Paper can’t
solve problems. Pagper can't adapt to change. We
can schedule dl the reviews we want. We can
produce al the andysis and design documents we
want. We can coordinate and cross check and plan
al welike. But aslong as people are considered
second order elements of the process, the process
will fail.

Alistair Cockburn saysit best. Processisasecond
order effect upon success. Thefirst order is people.
XP focuses upon people. It provides aframework
wi thin which people can communicate effectively.
As Kent Beck says, XP is an atempt a making it
OK to tell the truth.

[Mark] Ralph Johnson is quoted as saying (thisis
hear say) that the XP processis

analysis..test...code...design... would you say thisis
an accurate description of XP?

[Bob] No. It is, however, an adequate description of
one development episode in XP. A devel opment
episode might last an hour.

An XP project is filled with thousands of little micro
iterations. Each of which contains acomponent of
andysis, test, code, design. The orderingis
significant. Understanding comes first (i.e.
andysis); which is mixed with some design as well.
Then we write test cases that describe that
understanding. The act of writing tests means that
we must dso have adesign for the code in our
minds. Then we write code that passes the test
cases, and of course there is an element of design
involved with writing the code. Findly we refactor
the code to make it as simple and clean as possible.
So there is an aspect of designindl four of the

steps.

Software Architecture

[Mark] On the subject of the overall software
architecture of a system (the package structure,
architectural layering, etc.), you have always been a
proponent of the application of good design
princples (acydic dependencies, interface
segregation, etc.). Isthe architecture of a system (as
defined here) at risk with XP? The concept of a
systemmetaphor doesn't seem, to me at least, to sit
with this definition of architecture, what are your
thoughts on this?

[Bob] Architecture is probably the single most
important aspect of any software project. Without a
good architecture, asystem will degradeinto a
quivering glob of slime. Any process | use to
devel op software will be centred on producing the
best possible architecture.

XP has an architecture step known as the System
Metgphor. The concept of the metaphor is not the
architectureinitsfull form. Rather it isthe seed
from which the crystaline structure of the
architecture will grow.

Architecture can never be fully decided in an orgy
of up front design. Architecture, like everything
else in the software environment, must evolve. XP
provides the iterative frequency, and the architecture
focus to ensure that astrong architecture will evolve
as the project grows.

There are rules in XP that force the devel opersto
maintain and evolve the architecture. Rules of
simplicity -- rules of communication -- rules of
procedure. Developers are not dlowed to checkina
module if it is not in the cleanest, simplest, and most

flexible state that they can think of. Developers
must always collgpse duplicate code whenever it is
found. Developers cannot work aone, but must
aways work in pairs, so that they can chalenge
each other on architectura issues.

[Mark] I'd agree with your sentimentsregarding
architecture asimportant, and that you're unlikely
to get all aspects of an architecture right up front.
But an up-front vision of the architecture system
can't be a bad thing, can it?

[Bob] No, not at al. That’s why we create asystem
metaphor in XP. It’s aso why every release begins
with an exploration phase, and every iteration
begins with reassessment of the current design and
architecture.

[Mark] 'Do the simplest think that could possibly
work' isthe design maxim of XP. Isit not true that
with a little more forethought and a little less
immediacy, the necessity to refactor existing code
could be avoided? Arelated point is that of how
‘holistic' an approach is adopted. By holistic| mean
the opposite of 'piece by piece' - taking a wider view
of functional requirements and trying to design a
solution which covers, say, 5 rather than one
requirement.

[Bob] It is possible that with "alittle more
forethought" we could reduce some refactoring. So
why would we choose to refactor instead of gpply
forethought? Simply because refactoring is cheaper
and more relicble.

I'm not saying that forethought isn't vauable — it
certainly is. But forethought is speculative. And
time spent on specul ative ventures is much more
expensive than time spent on sure ventures. Thus, |
prefer the surety of refactoring to the speculation of
long range forethought.

Thus, prior to each task, | will design that task; and
make sure it fitsinto the current system architecture.
I will write the tests. | will write the code thet
makes the tests pass. And then | will look again at
the code and refactor it, in smal steps, until | think
itsdesignisgood. No long range speculation.

Only short term surety.

Does thislead to revolutions? Certainly! There will
be times when the refactoring approach gets caught
inaloca minimum. In such cases there is abetter
gpproach to the entire system, but it requires an
incrementd effort to push out of the loca minimum
and get into the more globa minimum. Once such a
need has been identified, XPers are unafraid to

refactor into this new globa minimum. They aren't

afraid because:

1. They have theteststo prove at each step of the
way that nothing has been broken.

2. They work in pairs, so that every step has the
benefit of two minds.

3. They practice group ownership of the code, so
they are dl familiar with every bit of the
existing code.

Could the change to the better design (the globa
minimum) been prevented with some forethought?
Perhaps. How much forethought does it take to
ensure that you have found it? What will you pay
for it? Why should you pay this up front? The XP
philosophy is: pay for what you need, when you
need it; and not before.

[Mark] But if you know you're going to need a
certain design structure to cover the next two
requirements you're going to work on, wouldn't you
just put in that extra bit of work up-front to cover
then? And isit really cheaper to refactor than to
design?

[Bob] Is your design structure right? How can you
be sure if you haven't implemented one of the
features yet? Are you sure it would be chegper to
implement what you think the design ought to be?
Or would it be cheaper to implement the design
when you need it and no sooner? XP chooses the
latter course in the assumption that up front payment
on speculaionis, on average, more expensive than
paying right now for just what you need right now.
XP justifies this by assuming that refactoring inthe
presence of copious unit tests, and pair proganming
iS very inexpensive.

[Mark] We all know that design is difficult. It's
difficult to think about design, and certainly hasless
immediate reward than writing code. My personal
experience, though, isthat getting the basics of the
software design right pays big dividendsin the
longer run (and by this| mean over a two to three
months timescale). Is there not a danger that as XP
has no 'design deliverables per-se, that designis
going to suffer?

[Bob] No, there is no danger at al. Indeed, design
thrivesin an XP environment. XP isdl about
design. We continuously drive the code into the
best possible design that we can think of. We never
say "We'll go back and fix that later."

We must come to terms with what designis. The
design of aprogram is the shape of its code. The
partitioning of the code into methods, classes,
packages, etc; and the relationships that exist
between those elements. We might represent these
things in diagrams; but the diagrams are not the

design. They are just proxies for the design. The
red designisinthe code. XP does not vaue design
proxies. XP vaues direct expression of the design
in code. And XP va ues the best possible design for
the code.

It places such ahigh va ue on this, that forces usto
write tests that enable usto fearlessly refactor, just
so that we can be free to move the code inthe

direction of what we perceive to be the best design.

[Mark] True, what we're working towards at the
end of the day isto have our code in a shape that
makes it easy to maintain, extend, etc. And true,
were likely to need to restructure - refactor - our
code sometime to make thisa reality. | think the
essence of what worries me amongst othersisthat
without an explicit 'design’ phase you're just
postponing dedisions that you're going to have to
make as some point, although | can see that the
focus on refactoring means you may get there
eventually.

[Bob]Again, XP assumes that paying now for what
you might need later is more expensive than paying
now for what you know you need right now. The
risk with this gpproach is that there may be so much
more rework than with amore up-front approach,
that it overwhel ms the cost of the up front design,
and the cost of carrying dl that extraunutilised
design through the project lifecycle. XP assumes
that rework in the presence of unit tests and pair
programming is inexpensive, and that the cost of up
front design, wrong guesses in that up front design,
and carrying dl the up front design elements in the
software is expensive.

[Mark] Something UML (dass and package
diagrams) do offer is the ability to look at your
software at a higher level of abstraction: putting the
focus on high level design, etc. Isthere not a danger
that the lack of a design focus (in deliverable terms
at least) in XP may mean that a new generation of
programmers don't get to see the benefit high level
thinking? Would you, for example, advocate XPers
get OOA/D and UML training?

[Bob] To the last questions, yes, and yes. XPers
should certainly know the principles of OOD, and
should be able to use adesign notation like UML. It
is the proper application of the principles of OOD
that keep the structure of the code flexible enough to

be refactored. Thisisespecidly truein C++.
Without strong use of the principles, C++ code will
become so badly intertangled as to completely resist
refactoring.

Am | concerned about the loss of high level
thinking? Not at dl. Thereislots of high level
thinking done in XP. It is done a the beginning of
the project, the beginning of each release, the
beginning of each iteration, and the beginning of
each task. Moreover, the high level structure of the
software is * exposed* by the code. In awell
designed OO program, you can rip the low level
details out of the program without changing, or even
recompiling, the high level modules. One of the
most important principles of OOD says simply that
high level modules should have no dependencies on
low level modules (The Dependency Inversion
Principle).

[Mark] In what way can code become resistant to
refactoring?

[Bob] If you make asingle change to amodule, and
thet forces you to recompile for an hour, that
module is resistant to refactoring. Inorder to
refactor you must be able to get quick turnarounds.
What causes long recompiles? Improperly managed
dependencies!

Using XP, engineers are always sensitive to
turnaround time. If achange they make increases
turnaround, they refactor until turnaround is fast

agan.

User Interface

[Mark] Where does user-interface design fit in with
XP? Does XP has any impact on the quality of
interface a system might have, be that positive or
negative, and would you encourage a user-interface
spedalist to beinvolved in this?

[Bob] XP is asoftware development process. User
interface specificaion is adifferent topic entirely. |
would not have software engineers design the look
and feel of auser interface unless that interface was
going to be used by other software engineers. (And
maybe even then | wouldn't have the engineers
designit).

Visit Ratio’sweb site at http://www.ratio.co.uk for links

on object technology, additional articles, and past issues of
ObjectiveView.

| C

M A STERZCLASS

RATIO

We K now the Object of...

eXtreme Programming

A One-Day Seminar
by Robert C. Martin
President of ObjectMentor Inc.

Author of:
“ Designing Object-Oriented C++ Applications using the Booch Method”

Editor of: C++ Report

20 June 2000
L ondon, UK

"XP - You'll loveit or hateit, but one thing'sfor sure,
you NEED to know about it!"

For more information on this course, contact Ratio on +44 (0)20 8579 7900 or
by email at bookings@ratio.co.uk

Team and Personnel | ssues

[Mark] Pair programming is one of the facets of XP
that | find attractive. What benefits do you believe it
offers? Do you believe the benefits outweigh the
obvious costs, and how would you convince at IT
manager of this?

[Bob] There have been severa studies conducted on
the topic of pair programming (See the work of
Laurie Williams a the University of Utah,
Iwilliam@cs.utah.edu). These studies show that
paring causes no loss of productivity at dl, while
significantly decreasing defect rate, code size, and
job dissatisfaction.

| believe pair programming offers programmers a
way to maintain stimulating relationships with other
engineers. A way to share responsihility, overcome
fears, combine ideas, and just have fun writing code.

Please note: dasssizeislimited, so book early!

Convincing IT managers, who are unmoved by the
weight of other evidence, is ameatter of convincing
themto try it on one project (a ong with the other
XP practices).

[Mark] Does 'rol€e' separation exist in an XP team
(analyst, architectural authority, etc.) or can
everyone do everything?

[Bob] Everyone does everything. Clearly some
people will gravitate to certain kinds of jobs. But
there are no impressive titles like "architect™.
Remember, too, that if one person has askill, he
will teach that skill to dl his pair partners. And
since pairings are kept very short in XP (e.g. four
hours) everyone will be exposed to everyone else's
expertise in very short order. Thus al the engineers
influence each other greatly and learn from each
other continuously.

[Mark] Soif rolesdo exist it is because they occur
naturally within the team, rather than because they
are assigned?

[Bob] Yes. Of course there must be amanager who
isresponsible for providing resources to the team,
and keeping distractions avay from the team. This
manager is dso responsible for monitoring the
process and trying to spot and correct problems.
From time to time the manager may need acertain
rolefilled. Rather than gppointing someone to the
role, the manager will present the need to the team,
and let someone volunteer (or be elected).

[Mark] Some IT managers may feel that the
emphasis on developer satisfaction may be at the
expense of wider business objectives - deadlines,
etc. ("we have to have this systemby this date™)
How would you address such concerns?

[Bob] XP isfocused on customer needs. The
customer is the only source of requirements and
priorities. There must be acustomer (or asuitable
proxy) on site with the devel opers on afull time
basis. This customer bears the responsibility for
product definition and schedule. XP empowers that
customer to specify exactly what the team is going
to be working on, and in what order.

Onthe other hand, the team is responsible for dl
estimates. The customer cannot load arelease with
more than the team agrees can be done. The
customer can tell the devel opers what order to do
things in, but now how long it will take them.

Inthe end, the customer gets the most important
things done first. If adeadlineis missed, it isonly
the least important things that are missing.

Moreover, XP continuously measures progress
against deadlines. By thetime areleaseislessthen
one third complete, it will be clear whether the
velocity of the team is sufficient to meet the
schedule. Andif it gppears that the schedule will be
missed, the customer has the ahility to remove scope
from the release.

Findly, the measured vel ocity of the teamis applied
to dl future estimates, such that the estimates
become more and more accurate over time.

Reusable Artifacts

[Mark] Thereisstill a dear driver in the software
development industry to get re-use happening to cut
down development costs and time to market (see
recent interest in component based devel opment).
How does XP sit with such approaches, and how
would you approach the issue of developing re-

usable infrastructure (e.g. a persistence layer, an
email component, etc.) in XP?

[Bob] Thereis one sure way to fail to produce a
reusable framework; and that's to designit up front.
This strategy has been repeated many many times,
and the results are frequently the same; the reusable
framework isn't very reusable.

The best strategy for creating reusabl e frameworks
isto evolve them concurrently with & least three
gpplications that use them. XP can certainly be used
for this evolutionary process.

[Mark] Can't design up front work when the
designer has substantial experience of the needs of
the devel opers who will be using the component or
framework they are developing.

[Bob] Frameworks are big investments. Yes, they
can work if the designer has the necessary
experience, but how much of arisk are youwilling
to take? Wouldn't you rather know that the
framework will be effectively reusable?

| ntegration

[Mark] XPs emphasis on continual integration is
interesting, and will certainly bring any 'integration
errors rather quickly to the attention of the team
But, some of the projects I've been involved in have
millions of lines of code, and can take literally hours
or even days for a complete compile and rebuild. In
such an environment continuous integration may
prove to be problematic. Isthisjust a case of the
wrong project for XP?

[Bob] Possibly. However, when millions of lines of
code require hours or days to compile, the problem
is not one of sheer volume. Consider, there are
86,400 secondsinaday. If a10-megdine program
requires one day to compile, the compiler is
chuntering through 115 lines of code per second.
That's not particularly quick.

When dependencies are poorly managed, compile
times are O(N* N). When dependencies are well
managed, compile times drop to O(N log N). When
compile times are inordinaely long, there are
dependency problems in the design. And those
dependency problems are causing more heartache
than just compile time.

Still the question remains. If integrationis
expensive, can XP be used? The trick would be to
design the system such that integrationis not
painful. Using component design strategies, and
infrastructures like CORBA, COM, and RMI
become criticd for this. In effect we take ahuge

project and turnit into severd dozen smaler
projects with little or no integration overhead.

[Mark] With a consdous focus on up front design?

Of course! Thereis atendency to think that just
because XP defers acertain amount of up front
design, that XP is anti-up front design. Thisisfar
from the case. XP simply defers those decisions
that make economic sense to defer. Clearly alarge
component-based project would require at |east
enough up front design to get anideaof what the
components were. Then each component could be
developed by an XP team.

[Mark] XP has a strong focus on functional testing.

| particularly like the idea of writing the tests before
you write the code. What benefits do you think this
offers?

[Bob] There are so many! A suite of tests gives you
an anchor. You knowimmediately if any change
you have made has broken something. This enables
high rates of refactoring. A suite of tests gives you
asupplementad document that describes the code
being tested. If you want to know how to create a
certankind of object, there is atest case that shows
you how. If youwant to call aparticular method,
thereis atest case that shows you how. Andthis
document remains 100% accurate and very
complete, regardess of how much the software
changes over time.

The act of writing tests before you designis an act
of design. Kent Beck cdls this "Design by Testing".
It forces you to think through the item you are about
to test, from the point of view of auser. Thisisvery
valuable.

[Mark] Testing is, | believe, integrally related to the
wholeidea of refactoring. Are all tests and test
results automated? What tools are typically used to
assist in this (if any), and how would this type of
testing work in a GUI intensive environment, where
thereisa requirement to drive the Ul to get
something to happen, and the results maybe appear
on the screen?

[Bob] All tests are atomated, so far asthisis
possible. There are some very nice tools that help
with this. The XUnit family of test frameworks has
proven to be very useful. See
WMWW.Xprogramming.com for more information.

GUI testing can be done at the functiond level
simply by grabbing the widgets, stimulating them
(faking abutton press for example) and then reading
their state. Look and feel tests are much harder to

automate. | do them manudly; but there are
automatic strategies.

Documentation

[Mark] ‘ The code is the documentation.” This
reminds me of the self-documenting code arguments
when Pascal first came out. Can the code be the
documentation, and how?

[Bob] There islittle doubt that code is
documentation. Code is adocument. The question
iswhether it is agood vehicle for othersto read and
gain understanding of the software. The usual
problem isthat the software is so incredibly
focussed upon details that there is simply no way to
use it to get the big picture, and to derive the intent.

Sadly, most programs fail very badly at
communicating intent. This, again, is adependency
management issue. When asingle module deds
with both high level and low level issues, it is not a
well partitioned module.

Well written code is well separated code. Well
separated code is easy to read because each module
coverson and only one level of detail. Highlevel
modules remain high level. Low level modules
remainlowlevel. Anddl dependencies point from
low levelsto highlevels. (Exactly the opposite of
structured andysis and design).

Notice that this has nothing whatever to do with
language. The readability of aprogram has
nothing to do with the language. One must
assume that the reader is familiar with the language
and therefore the language is anon-issue. The issue
ispurely and simply one of structure and
communication. If the code iswell structured, and
if names are well chosen for the functions and
variables, then the code will be good at

communi cating intent.

This leaves the notion of aroadmap. XP has the
concept of ametgphor. It isthe job of the metaphor
to act as the roadmap so that people understand the
concepts and relationships within the system. XP
does not demand that this metagphor be written
down, so long asit is firmly entrenched in the
programmers minds. Persondly, | think writing it
downis not such abadidea so long asit is kept
very smdl; and is not any kind of atime sink.

The notion of ora documentation is scary to many
people. However, with pair programming, and with
people rapidly moving from pair to pair, the ora
knowl edge will rapidly diffuse through the
organization, and any newcomer will learnit very
rgpidly. XPers are not afraid of ora documentation.

[Mark] One major nightmare all of usin software
have to face is the issue of documentation getting
out of sync. with the code. | presume thisisthe
motivation behind 'the code is the documentation.’

[Bob] It is one, but it isaminor one. The red
motivationis simply tha design documents have
high short-term value and low long term vd ue. XP
recogni zes the short-term va ue but ignores them
once they have been committed to code. Thereisno
roominan XP project for keeping old design
diagramsin sync with new code.

Some environments demand these documents for
bureaucratic reasons. In such cases, the * customer*
will demand the documents, will prioritize their
creation, and will schedule them in anorma XP
project. InXP, if the customer wants something, it
gets prioritized and scheduled. When the time
comesfor it to be done, the developers do it. If that
means documentation, then the documentation will
be produced. It is not likely, however, that the
developerswill ever look a the documentation

agan.

[Mark] I've known some devel operswho can pick
up a piece of code, trawl through it and get a useful
grip on what's going on (I once worked on Unix
system softwar e, wher e this was a common
approach). Personally, | always hated doing this,
perhaps this was because the code was so awful in
thefirst place - and as you said, didn't communicate
intent at all - or perhaps I'mjust not right type of
developer for XP :-)? Isthere a certain type of
developer to whom XP is more applicable?

[Bob] The only constraint | can think of isthat the
devel oper must be comfortable working with others.
Remember that in XP everythingis donein pairs.
Communication is one of the prime vaues of XP.
So lone cowboys, or devel opers who can’'t work
well with others, are not going to do well with XP.

[Mark] Given theincreasing prevalence of tools
that can reverse engineer say, a dass diagram, from
a piece of code would it not be possible at |east at
thislow level to maintain an additional form of
documentation? Isthisisa trend you would like to
see continue to higher levels of abstraction, e.g.
generating package diagrams with dependendes
fromsource code?

[Bob] The more tools the better. If | can quickly
and easily use atool to convert my code to UML
diagrams, and then browse my code by navigating
those diagrams, then I'm dl for it. Together-J, and
Visud Age for Javado things like that. It canbe a
very powerful way to view the code.

The point is, that it istied directly to the code.
There is no effort expended in creating the
diagrams, no effort expended in keeping the
diagramsinsync. The diagrams are just a
convenient reflection of the code. Andthey are just
as expendabl e as before, because they can be
recreated on demand.

[Mark] Scalahility has been raised asa concern
about XP is XP just intended for small teams?
How big a teamwould you say can be effective
using XP? and would you put a maximum|limit on
the size of an XP team?

[Bob] Our experience with XP iswith small teams

of adozen or less. My persond belief isthat it will
scae quite well. But cautionisindicated. It would
be irresponsible to flash cut a 100-man team to XP

at the moment. | would, however, have no qualms

about easing a30-man team into XP.

There is another issue here. Team sizeis not agood
indicator of project complexity. A dozen people are
probably enough to write 90% of the software
projectsin play today. Many, perhgps most,
projects are simply overstaffed by afactor of five or
ten. IMHO, teams need to be lean and aggressive.

[Mark] Could you see XP being * misused* ? What
are the biggest 'gotchas that new XP teams are
likely to face?

[Bob] Anything can be misused. One form of
misuse is over-enthusiasm.

For the foreseeable future, new XP teams are going
to be enthusiastic about trying XP. | think they
need to temper their enthusiasm so that they don't
expect more than they can deliver. XP isaprocess,
not amiracle. It will help, perhgps alot. But it's not
the master stroke that’s going to remedy the
software crisis. After dl, software is* hard*. Even
with XP, there will still be schedule overruns, still
be improperly set expectations, still be unreasonable
demands, still be politicd manoeuvrings. XP is not
the signpost of the millennium. (er...)

[Mark] Would you expect users of XP to customise
it to their own circumstances? What typical
customisations have you encountered? Are there
any you would recommend personally, and in what
circumstances?

[Bob] One of the demands that XP makes onits
teams is that they continuously review the process
and evolve it. If apractice getsinthe way, change
the practice. Geographic separation is acase where
some of the XP prectices have to be customized.

You have to get creative with pair programming.
You can use cute tools like NetMeeting so that both
parties see the same screen on their individua
workstations, and each can take control of the
program. You can use delayed pairing, such that
one person writes the code and another reviews and
refectorsit.

One customization | have used, and that we are
likely to see become very prevdent in the Javaand
C++ world, is the integration of dependency
management principlesinto XP. Java, and
especidly C++, incur ahigh price for mismanaged
dependencies. As | said before, apoor dependency
structure can make refactoring intractable.

[Mark] What formisthisintegration likely to take?

[Bob] Extrarefactoring rules. Currently we have
the Once and Only Once rule, and rules related to
readability. Integrating the dependency
management rules will simply extend this list.

[Mark] There's something of a habit in the software
development industry of new approaches being
touted as the solution to the 'software crisis. Cynics
may see XP asjust another passing fashion. How
would you respond to that?

[Bob] | respect hedthy scepticism. It counters the
fallings of over-enthusiasm. So, to the sceptics|
say, thank you for keeping everybody honest.

| expect, however, that anyone who isvocad intheir
scepticism would dso be putting lots of effort into
verifying that their skepticism was more than just
their own prejudice. | would be expecting them to
take aserious look a the dataand coming to
reasoned conclusions. It is my belief that upon
investigation most sceptics will lose * some* of their
scepticism.

[Mark] To round off, how would you summarise
projectsthat are or are not appropriate for XP?

[Bob] The project that is appropriate for XP isthe
project being devel oped by ateam that wants to go
fast, produce high qudity software, work reasonable
hours, and keep their customers happy. They have
to like each other well enoughto stay in close
contect with each other for long periods of time.
And they have to be disciplined enough to follow
the rules, even when the pressure starts to mount.

[Mark] Bob, thank you very much...,

[Bob] You are quite welcome.

RATIO

P R OUD

S PONSOR

© TOOLS
Europe 2000

“ Enterprise Architecture - Patterns - Components’
Mont Saint-Michel / Saint-Malo Normandy / Brittany, France

5-8 JUNE 2000

KEYNOTE PRESENTATIONS TO INCLUDE:

Bertrand Meyer
Inventor of
Design by Contract

James O. Coplien
Founder of the
Patter ns Movement

lan Graham
"Requirements Engineering,
an OO Approach”

aswell as...

HANDS-ON TUTORIALS ¢ WORK SHOPS ¢ TECHNICAL PAPER PRESENTATIONS
DiscussiON GROUPS ¢ PRODUCT DEMONSTRATIONS

Visit http://www.toolsconferences.com/europe

for full programme and registration details

TOOLS...

the major series of international conferences entirely devoted to Objects

Object Mentor, Inc. www.objectmentor.com

Better Software —
By lecture, demonstration and by example

Training * Mentoring « Development the skills being devel oped. Many organizations

for accelerated project success have software devel opment experts, but these
engineers are required to |ead devel opment
projects and rarely have enough time to spend
with other team members. Delays become
inevitable while the team thrashes and struggles
to learn the technology and gpply it & the same
time.

Our goal at Object Mentor isto improve
the skills of your development team within
the constraints of your project's gods and
deadlines. Your success is our success. We
apply that philosophy with each customer, on
each project. Through years of working with a
diverse set of software development teams,we Object Mentor fills the gap. Our training,
have devel oped aflexible set of service mentoring, development, and on-line
offerings that can be matched to your services will develop, lead and support the
organization's current skill set, required skill team to project completion. Thrashing is
set, and project budget and deadlines. minimi zed because your Object Mentor will
|ead the team forward. In the process, we
The process of developing ateam's skill develop the team's sKills, leaving the team
involves a number of steps, including formal with the expertise to support the project on
instructor-led training, individua self-study and going and tackle increasingly complex software
practice, and mentoring by expertsto reinforce projects in the future.

Is a heavyweight process slowing you down?
OBJECTMENTOR has a better way . . .

TRAINING COURSES:
- Extreme Programming (XP)
- Principles of OOAD with UML
- Advanced OOAD and Design Patterns
- Programming in Java: From UML to Code
- Object-Oriented Design in C++
- Object-Oriented Overview for Managers

All courses are offered as public courses
inthe U.S.Aand on-site courses
throughout the world.

XP Immersion Training
with Kent Beck, Martin Fowler, Ron Jeffries,
and Robert C. Martin

see www.objectmentor.com for details.

W E K NOW

T H E

OBJECT O F

TRAINING

Excellence in Object and Component Training

The following courses are offered both in-house and on aregular public schedule basis.

Object-Oriented Analysis &
Design using UML

This course gives you a practical understanding of
the major techniques of the UML (Unified Modelling
Language) object-oriented analysis and design
notation, and how these techniques can be applied
to improve quality and productivity during the

? What they thought... \

“ Thanks for this! Everybody isbuzzing after
the course. Thanksto you and your teamfor
all of your efforts, particularly the lecturer,

who has an excellent manner and just knows

analysis and design of computer systems.

K What they thought... i

“ Patternswere particularly useful aswere
the hints & tips & tricks that were sprinkled
throughout. It was also very useful to be
shown *why* some of the techniques we use
are good; up until now we' ve been choosing

the techniques based on instinct.”

\ Phil Harris, Sllicon Dreams /

Object-Oriented
Programming in C++

This ocourse will
understanding of the C++

leave students with a firm
language and its

his stuff inside out.”

\ Chris McDermott, Polk Ltd. /

Component-Based Design
using UML

This course gives you a firm understanding how to
analyse and design extensible and customisable re-
usable business (domain) oriented components, and
how to assemble such components to create bespoke
applications. The course has a dear focus on the
architectural aspects of component-based design.

? What they thought... \

“ This has been a worthwhile exerdse. The
course was concise ... well focused via
examples and practical sessions’
Course delegate, MTI Trading Systems

underlying object-oriented principles. Attendance on
the course will enable participants to make an
immediate and productive contribution to project
work.

“ Things were explained dearly, in simple
terms and with relevant examples.”

\ Course delegate, Primark j

Object-Oriented
Programming in Java

/ What they thought... i

“| particularly liked the hands-on
implementation of the Java language theory
in an extendable exanmple.”
Graham Hoyle, TetraLtd.

This course will give you a practical understanding
of the major features of the Java development
environment and language, both in the context of
web applets, and in the context of stand-alone
applications. Sudents will leave the course able to
start productive work immediately.

“ Really good course, well presented, well
informed, lots of leads to wider ideas, etc.”
Roy Turner, Silver Platter Informati onw

Email info@ratio.co.uk or call Ratio Sales on +44 (0)20 8579 7900 for
more information.

