
 Page 1 ObjectiveView Magazine Back copies at ratio.co.uk

Published and funded by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

ObjectiveView
Objects and Component Journal for the Software Professional

Published by

OO Consultancy – Training – Development –Recruitment
See http://www.ratio.co.uk for back copies

FOCUS ON .NET

C#.NET
VB.NET

Managed C++ under
.NET

ALSO

EXTREME
PROGRAMMING

REFACTORED
Interview with Doug Rosenberg
and Matthew Stephens on their

objections to XP

Flash Flowers III – by G. Gerard

 Page 2 ObjectiveView Magazine Back copies at ratio.co.uk

Published and funded by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

ObjectiveView
CONTACTS

Editor

Mark Collins-Cope
markcc@ratio.co.uk

Free subscription
Email delivery:
objective.view@ratio.co.uk
(subject: subscribe)

Hardcopy delivery:
objective.view.hardcopy@ratio.co.uk
(include full contact details)

Feedback/Comments/Article
submission

objective.view.editorial@ratio.co.uk
Or join ObjectiveView @ Yahoo.com

CONTENTS

Managed C++
By Richard Vaughan

3

C#.NET
By Jon Jagger

12

VB.NET
By Paul Hatcher

32

Extreme Programming
Refactored

Mark Collins-Cope interviews
Doug Rosenberg and Matt

Stephens

22

Book Review 38

WEB DISTRIBUTION PARTNER

http://www.iconixsw.com
Tel: +1 310 4580092
Fax: +1 310 3963454

Email: marketing@iconixsw.com

WEB DISTRIBUTION PARTNER

http://www.gentleware.de/
Phone +49 (0)40/ 32 899 878
Fax +49 (0)040/ 42 883 23 28

EMail info@gentleware.de

 Page 3 ObjectiveView Magazine Back copies at ratio.co.uk

Published and funded by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Fresh Fuel for the Flaming Fires – Managed C++

Microsoft’s .NET provides a multi-language component inter-operability
environment – but as always supporting C++ has proved a challenge.
RICHARD VAUGHAN takes a look at the differences between Managed
C++ and the base C++ standard…

Introduction
Those of you with culinary leanings may have noticed a
recipe for Warm Spider Crab Linguine in the March
2002 edition of the BBC’s Good Food magazine. The
instructions for eviscerating a Spider Crab read like a
cross between The Spanish Inquisition’s Staff
Handbook and the memoirs of Joseph Mengele, and one
gets a similar feeling upon consulting the Managed C++
Reference on the Microsoft web site. Many changes
have been made to traditional C++, in the name of
.NET, in order to bring us this variant on the standard
and this article examines the major thrust of the
offering.

Considering .NET generally, there are some eyebrow-
raising claims being made for the technology. The
following from the Wrox Press .NET support site is an
example:

‘This idea of making programming much much easier
by putting the really complex stuff "under the hood"
while giving the programmer an intuitive and easy
interface to work with is leading to the possibility of
non-computer professionals taking up the task of
authoring computer programs for their non-information
technology knowledge specialties (medicine, civil
engineering, etc.). Time will tell if we are at a turning
point in the history of electronic digital information
technology in which the numbers of persons capable of
competently authoring a computer program increases
by one or two or more orders of magnitude.’

This is worrying because precisely the same claims
were made for COBOL when that was introduced and
(as ever) Object Orientation too. However, the
development of non-trivial software is complex and
challenging because the systems that we attempt to
model on our machines are themselves very complex
and challenging. To apply the logic espoused above to
other areas of human pursuit is to imply that one day
everybody could be a brain surgeon. Yet no amount of
nifty tools (and languages are tools as well) will ever
deliver us from the conservation of complexity.

Modus Operandi

While there are superficial similarities between the Java
model and .NET, they are, in fact, fundamentally

different approaches. In the case of Java, high-level
source code is compiled into virtual-machine
instructions. This allows a single executable to run on
any machine, given that a VM is available for that
machine. .NET parallels Java, in that high-level source
code is compiled into Microsoft Intermediate Language
(MSIL), which is similar to Java byte code, however
from here the technologies diverge.

Firstly, the intermediate language (IL) does not run on a
VM but is Just In Time compiled (jitted) to native
machine code prior to execution on the target platform.
(The Jitting process being a temporal equivalent to the
spatial solution that a VM represents.) The second
difference is that IL code can be generated from a
variety of common programming languages. (Note that
while it is also possible to compile Java byte code from
non-Java sources, Sun did not intend this.)

However, all programming languages are not the same
and .NET stipulates the Common Language
Specification (CLS) to which existing languages must
be bent in order to comply with the .NET framework. In
essence, the CLS is to these as the XML Infoset is to
XML syntax. That is to say XML documents are
composed, semantically, of elements but other syntax
could be used in place of angle brackets - XML
documents could, hypothetically, be coded using C-like
syntax.

Given this, we are not actually dealing with cross-
language programming, where object code from
different compilers is linked to a common executable,
but cross-syntax programming. The syntax may appear
to be that of your favourite programming language
(C++, Eiffel, Smalltalk etc.) but in reality you are
conforming to CLS semantics. Given that one is coding
to a single underlying object model, this will
necessarily place restrictions on the syntactic model that
one is using.

Managed code is compiled into ‘assemblies’, which
contain procedural code, versioning information and
metadata that describes the types used in the assembly.
While traditional C++ development is possible with
Visual Studio .NET, sources can be compiled into IL by
using the /clr compiler switch. However, this does not
automatically transform traditional C++ syntax into a
.NET assembly. Firstly, you must include the following
at the top of a C++ source file:

 Page 4 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

#using <mscorlib.dll>
using namespace System;

The #using pre-processor directive makes the
resources in the core library assembly available to code
in the translation unit. The other using directive
makes the .NET class libraries available. That,
however, is only the start as MC++ code differs
significantly from unmanaged C++. Let’s explore those
features and differences.

The MC++ Lexicon

MC++ adds fourteen new keywords to C++ which must
be used to qualify otherwise normal C++ syntax. These
are:

__abstract
__box
__delegate
__event
__gc
__identifier
__interface
__noqc
__pin
__property
__sealed
__try_cast
__typeof
__value

Some of these are fairly simple and innocuous in their
effect, as in the case of the __identifier keyword.
This allows one to use other language types where the

names of those types are normally C++ keywords. For
example, you may wish to use a class called ‘switch’,
which has been declared using another language and
which would normally constitute a syntax error were
one to use it as the name of a C++ class. Others
however have far more profound implications and this
is partly because of the .NET dynamic-allocation
model, which we shall examine next.

Storage Management

Given that .NET is about interoperability, all .NET
applications will hold (at least some) objects in a
common heap. It is the characteristics of this that feed
back into C++ to yield MC++. The CLR heap is a
garbage-collected, compacting heap. Garbage collection
absolves the application of the responsibility of
deallocating unwanted objects, while ‘compacting’
means that free space between allocated blocks is
coalesced into a single block. This is accomplished by
shifting blocks towards the beginning of the storage
arena; a technique that was introduced in the storage
management policies of early operating systems.
Figure 1 shows the deallocation of an object (Object 2),
the gap that it leaves and the subsequent compaction of
the free space that remains.

Garbage collection has the advantage that it prevents
deallocated storage from being re-accessed, thus
precluding rogue pointers. Memory leaks are also
impossible, because unreachable objects are recovered
automatically, plus it frees the developer from
managing object lifetimes. This does incur a cost
however because the collector runs as a background
thread, which impinges on performance, plus the
compaction process incurs a time penalty.

CLR Heap

Object 4

Object 3

Object 2

CLR Heap

Object 4

Object 3

CLR Heap

Object 4

Object 3

Object 1 Object 1 Object 1

Figure 1 – memory allocation and compaction under .NET

 Page 5 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

All of this has implications for MC++ because the
normal C++ storage management model conflicts with
the CLS semantics demanded by .NET. Type
declarations that are compiled for the .NET framework
must therefore be adorned with MC++ keywords, which
makes them known to the CLR.

#using <mscorlib.dll>
using namespace System;

__gc class Simple
{
public:
 int i;
};

int main ()
{
 // Runs forever
 while (true)
 {
 Simple *SimplePtr = new Simple;
 }
 return 0;
}

The above code fragment shows a simple managed C++
class, where the __gc keyword means that instances of
the ‘Simple’ class are garbage collected. Were this
unmanaged C++ then the loop would eventually
exhaust the free store because each object that is created
would be lost upon the next iteration. Instead the heap
is never depleted because the garbage collector recovers
the unreachable objects.

Clearly this has a systemic effect on other aspects of
normal C++ and this is demonstrated in figure 2. Here
we can see a set of objects that reside in the managed
heap. The first points to the third, which is also pointed
to by a stack-based pointer in the application’s runtime
space. The fourth is pointed to by an object, which
resides in the application’s non-managed free store.

Application Process
Space

Freestore

Stack

Executable
Code

CLR Heap

Object 4

Object 3

Object 2

Object 1

Application Process
Space

Freestore

Stack

Executable
Code

CLR Heap

Object 4

Object 3

Object 1

Figure 2 – Pointers in C++ and their relationship to the CLR Heap

 Page 6 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Given that compaction necessarily changes the address
of an object then this means that any pointers to the
object must also be updated accordingly. Given this,
any pointer to a CLR heap-object is not an ordinary
pointer, as the compactor must be aware of it for it to be
updated upon compaction. Therefore MC++ pointers
must be declared with the __gc keyword as well as the
objects that they point to. Note that the same holds for
references as well. Note also that a given object’s
address can be fixed (thus preventing full compaction)
using the __pin keyword.

The code below shows a class that contains a __gc
pointer to objects of class Simple:

#using <mscorlib.dll>

using namespace System;

__gc class Simple
{
public:
 int i;
};

__gc class OtherSimple
{
 public:
 __gc Simple *SimplePtr;
};

In addition to the above, stack-based objects of user-
defined type are disallowed (every instance of a __gc
class must be dynamically allocated). This in turn
means that __gc objects cannot be passed or returned
by value. The following example demonstrates this:

#using <mscorlib.dll>
using namespace System;

__gc class Simple
{
public:
 int i;
};

void SomeFunc (Simple SimpleParameter){};

int main ()
{
 Simple InstanceOfSimple;
 // Will not compile
 Simple __gc *SimplePtr = new Simple;
 // Fine
 SomeFunc (InstanceOfSimple);
 // Will not compile
 return 0;
}

There is, however, an alternative to __gc classes and
that is the concept of __value classes. The __value
keyword is intended for small objects that generally
have short lifetimes and for which garbage collection
would be too costly. As opposed to __gc classes,
__value classes can be instantiated on the stack and
can be passed by value to functions. They cannot
however be allocated on the CLR heap unless they are
embedded within a __gc class. For example:

__value struct Simple { int i; };

__gc class Enclosing {
 Simple SimpleMember;
};

Simple SomeFunc (Simple SimpleParam)
// Passed by value
{
 SimpleParam.i += 1;
 // Value at call site unaffected
 return SimpleParam;
 // Returned by value
}

int main ()
{
 Simple SimpleInst_1 = {10};
 Simple SimpleInst_2 =
 SomeFunc(SimpleInst_1);

 Enclosing _gc *EnclosingPtr =
 new Enclosing;
 // Allocated as part of Enclosing
 // instance

 EnclosingPtr->SimpleMember =
 SimpleInst_1; // Copy value
 EnclosingPtr->SimpleMember.i +=
 SimpleInst_2.i;
 Console::WriteLine (SimpleInst_1.i);
 Console::WriteLine (SimpleInst_2.i);
 Console::WriteLine
 (EnclosingPtr->SimpleMember.i);
}

Output:

10
11
21

This may appear to return us to more familiar
unmanaged C++ territory, however it creates a new
problem in that one must choose whether a class is
going to be __gc or __value - A type cannot be
both. Note also that while one can still dynamically
allocate a __value object, this can only occur on the
normal C++ free store and you must qualify operator
new with the __nogc keyword to achieve this.

Finally, there is another issue lurking behind all of this.
Studies indicate that there is no single, optimum,
storage-allocation policy, yet .NET takes a ‘one size fits
all’ approach, which cannot suit every application.
Traditional C++ gives the ability to customise
allocation strategies on a per-class basis, thus yielding
up opportunities for significant performance
optimisations. Overloads of new are not allowed in
__gc classes however and this restriction could
compromise many applications.

Storage management aside, let us examine the
inheritance model in MC++.

Inheritance

Once again, and in order to get all .NET languages
singing from the same hymn sheet, the MC++
inheritance model differs significantly from traditional
C++. Firstly, if a class has no super class then it is

 Page 7 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

implicitly derived from System::Object. This is to
provide compatibility with the C# libraries where
everything is derived, cosmically, from a single,
universal base. Secondly, all inheritance must be public;
private and protected inheritance is not allowed. In
addition to this, managed classes cannot declare friend
classes or functions.

Fourth, one cannot mix __gc and __nogc classes in
an inheritance relationship although it is possible to mix
__gc classes with classes declared using other
languages. For example a C# class can form the base
for an MC++ class and that class could then form the
base for an Eiffel# class.

Implementation inheritance is available in the single
form only - multiple inheritance being available only
for interfaces. i.e. a class can have many base classes
but only one of these may have attributes; the rest must
be populated with member functions alone. How
troublesome this is depends upon your view of multiple
inheritance. Some believe that full-blown MI, as
supported by C++, Eiffel etc. is an entirely good and
desirable thing and that for it to be curtailed in .NET is
to deny developers their freedom. Meyer, for one, takes
this view and feels that .NET’s restrictions on MI
should (and eventually will) be lifted.

In reality, multiple implementation-inheritance will
always incur a small performance penalty and can
introduce name conflicts. Moreover, the same effect can
always be accomplished using a mix of Is A and Has A
relationships with no greater loss of performance.
Moreover, as Alexandrescu points out, MI is a simply a
syntactic mechanism for combining classes and does
not implicitly orchestrate the collection of bases – This
is something that the derived class must be made to do.
Many developers will therefore be unperturbed by the
restrictions that .NET imposes in terms of building new
applications from scratch, although it does have
significant implications for porting existing systems
because a proportion of their code will not compile.

Aside from restrictions on the normal C++ inheritance
model, what additions does .NET make in MC++?
Firstly, the subclassing of a type can be mandated by
the use of the __abstract keyword, although an
__abstract class is not required to have pure virtual
functions. Secondly, __interface classes can be
declared where no data members are allowed (apart
from a __value enum) and all member functions are
implicitly pure virtual. Subclassing of __interface
classes is therefore also mandatory. Figure 3 illustrates
many of the above points:

B

Attribute : T

Method1 : T (P : T)
Method2 : T (P : T)

C

Method : T (P : T)

D

Attribute : T

E

F

A

G

« Interface »

« __nogc »

« __nogc »

« __gc »

« Friend »

« __gc »

« __gc »

Figure 3 – Summary of inheritance issues in Managed C++

In contrast with the __interface and
__abstract classes, further derivation can be
prevented by use of the __sealed keyword, although

this cannot be applied to an __abstract or
__interface class. __sealed can also be applied
to virtual member functions thus preventing them from

 Page 8 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

being overridden. Note that value classes are
__sealed implicitly.

Member Functions

Member functions also differ in a number of ways from
unmanaged C++. Firstly, the garbage collection issue
holds important implications for constructors and
destructors. One of the great things about these is that
they are an excellent way of ensuring that something
happens automatically. In the case of destructors, this is
true even when an exception is raised and this lends
itself to a variety of attractive and useful techniques.
However, with garbage collection, destructors become
finalisers, which means that they are called just before
the garbage collector reclaims the storage, not when the
object goes out of scope. Given that one cannot
normally guarantee when garbage-collection will occur,
it is therefore impossible to know precisely when the
finaliser will be called and thus a useful technique is
lost.

It is possible to work around this by calling operator
delete on a __gc object, which will force execution of
the destructor there and then. (The CLS guarantees that
the destructor will not be called again when the garbage
collector subsequently recovers the object.)
Alternatively, you can call the destructor explicitly, as
in unmanaged C++, and this would appear to reinstate
the technique outlined above. In reality, you now have
to think explicitly about the death of the object, whereas
the original idea was to let the language rules and the
compiler take care of everything.

There are other changes to construction semantics to
consider as well, such as the fact that user-defined
destructors are always virtual. Other changes, however,
are more radical. For example, in traditional C++, a call
to a virtual function from within a base-class
constructor will result in execution of the override that
is visible at that class’s position in the hierarchy. This
occurs irrespective of any overrides that are present in
derived classes. In MC++, however, the same call will
cause execution of the most overriding version of the
function to be executed. Note that member objects are
zero initialised before the execution of the constructor
and the overriding function is therefore guaranteed not
to execute on an object that contains garbage, (although
you may not actually want the defaults either).

In addition to this, managed types cannot have a user-
defined copy constructor. This implies that copying an
object that has a pointer to another dynamically
allocated object will result in the CLR creating a copy
of that object as well, and so on recursively. (Although
the Microsoft reference does not seem to mention this.)

Functions with default arguments are not permitted
therefore one must use a wrapping function to achieve

the same effect. I.e. for a function with a single default
argument one must create a new function that takes the
original’s non-default arguments as tramp variables and
which calls that function supplying a hard-coded default
parameter.

Operator Overloading

Operator overloading has also felt .NET’s sweet caress
and, while it is (mostly) still possible, the operator
keyword cannot be used. For example the following
constitutes a syntax error:

__gc class Simple
{
public:
 bool operator == (Simple &RHS);
 // Error
 // Note: const cannot
 // be used
};

Instead one must used a static function with a
distinguished name and operator overloads in __gc
classes must have at least one parameter that is a pointer
to the defining class. This function can then be called
explicitly by quoting the distinguished name, or it can
be invoked implicitly using conventional infix notation.
For example, the equality operator is overloaded using
op_Equality :

__gc class Simple
{
public:
 static bool op_Equality (Simple *LHS,
Simple &RHS) {...}
};

bool Compare (Simple P1, Simple P2)
{

 if (Simple::op_Equality (&P1, P2))
 return false; // Explicit
 if (P1 == P2)
 return false; // Implicit
 return true;
};

The following is a list of the operators that can be
overloaded in MC++ and their conventional symbols

Unary operators

op_Decrement --
op_Increment ++
op_Negation !
op_UnaryNegation -
op_UnaryPlus +

Binary operators

op_Addition +
op_Assign =
op_BitwiseAnd &
op_BitwiseOr |
op_Division /
op_Equality ==
op_ExclusiveOr ^
op_GreaterThan >

 Page 9 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

op_GreaterThanOrEqual >=op_Inequality !=
op_LeftShift <<
op_LessThan <
op_LessThanOrEqual <=
op_LogicalAnd &&
op_LogicalOr ||
op_Modulus %
op_Multiply *
op_RightShift >>
op_Subtraction -

Note that __gc classes cannot overload the address-of
operator.

Serious Restrictions

Some features of traditional C++ are preserved in
MC++. For example, exception handling is still
implemented using the normal try/throw/catch
mechanism. Alternatively, one can use Structured
Exception Handling by means of the __try ,
__throw and __catch keywords. SEH also adds the
__finally keyword, which marks code that will be
executed following the throwing of an exception but
before the exception object leaves the throw site. MC++
also adds the __try_cast keyword, which is similar
in operation to the dynamic_cast mechanism in
normal C++ and is used within a try block (an exception
is raised if the cast cannot be performed).

However, there are features of C++ that are simply not
supported in MC++ because they would conflict with
the CLS. The most onerous of these is the rough
treatment that templates receive. While it is possible to
instantiate a template with a managed type, templates
cannot have a managed type as a parameter type and,
worse of all, there is no such thing as a managed
template. For example the following code is not
allowed:

template <typename T> __gc class
SimpleTemplate // Error
{ … };

Given that genericity is not supported then there can be
no support for cross-language genericity. For example
you cannot use a C++ template in a C# assembly nor
can you cannot derive a C# class from a C++ template.
The official word from Microsoft is that they are not
supported in this release, however for various technical
reasons, it is hard to see how they could be supported
even in future releases. This will create problems for the
adoption of .NET into the C++ community because a lot
of very powerful techniques will be impossible – A
managed version of the STL is out of the question, for
example. Certainly the suppression of templates in
MC++ refutes the idea that .NET signals the end of C++
because the need for templates and the STL is too
strong to overcome by other existing means.

In addition, RTTI cannot be used. In itself this may not
be so bad because the CLR supports a much richer

reflection model but it does impinge on porting existing
code. A trivial bit of editing and some recompilation
will not suffice and many points in existing systems
have to be rewritten.

Finally, _gc classes cannot have const member
functions. Nor is volatile permitted either. While
volatile is not such a problem as its role has always
been much more in low-level systems development
(something that .NET, by definition, detracts from), the
lack of const is pretty serious because it denies us the
benefits of const correctness as denies optimisation
opportunities to the compiler.

Conclusion

Managed C++ cannot be covered exhaustively here and,
for example, Delegates, Events and Properties (a
formalisation of accessor/mutator functions) have not
been explored, nor has ‘Boxing’ received an airing.
However, core issues are clear. Firstly, anyone who
thinks that one can develop for the .NET platform in
C++ as if nothing had happened is mistaken - Syntax
aside, the semantics are, in places, wildly different.
Given this, the term ‘Managed’ in MC++ will be
viewed by many as a euphemism for ‘Bastardised’ …
or perhaps worse. With MC++ (or any other .NET
language) one is actually working with C# semantics
(I.e. the CLS), therefore systems that are developed
from scratch may as well be coded in C# from the start.
In that way you can at least enjoy clean syntax that is
devoid of the extra (messy) keywords mandated by
MC++.

Secondly, Microsoft cannot walk away from C++ and
the principle reason, therefore, for them to support it on
.NET is to allow the porting of existing code to the
platform. It also wishes (political interests to the fore) to
create a sense of ‘old favourite on new platform’. It
therefore positions things by saying that you can create
managed code that bridges between existing (legacy, in
their terms) code and other .NET components -
unmanaged code can be moved over incrementally.

Some of the overviews of .NET support this by
implying that there is virtually seamless interoperability
between C++ and MC++. However, many existing
applications will not port by the simple addition of a
few keywords, because of semantic impedance. Given
this, fresh design-decisions will have to be made or a
wrapping approach will have to be taken (same thing),
and this can be done in two ways:

a. Embed unmanaged classes within managed
classes

b. Use managed pointers to managed objects,
which wrap unmanaged objects

 Page 10 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

However, these workarounds only serve to complicate
an already complicated business - good software
development seeks to simplify and MC++ runs contrary
to this.

Considering .NET generally, there is another issue,
which is the ‘cultural’ impedance that exists between
developers with different language-experience. The
experience gap between same-language developers
creates sufficient difficulties as it is, while language-
choice can influence the way that developers think
about a problem. .NET combines these factors, so that
we end up with heterogeneity in both syntax and
conception, and this can only add fresh fuel to the
language wars - To unify semantics whilst dividing
syntax sounds like a recipe for disaster.

These negative conclusions aside, there is a thin silver-
lining to all this, which is the vicarious benefit that
comes from understanding the compilation issues that
apply as a whole to C++/C#/Java etc. and the .NET
runtime. The John Gough book mentioned in the
bibliography is thoroughly recommended for those who
wish to plumb these fascinating depths.

Bibliography
• Compiling for the .NET Common Language

Runtime (CLR), John Gough, Prentice Hall, ISBN
0 13 062296 6

• The Bertrand Meyer .NET Video Course
• Modern C++ Design: Generic Programming and

Design Patterns Applied, Alexei Alexandrescu,
Addison Wesley, ISBN 0 201 70431 5

• www.microsoft.com
• BBC Good Food Magazine - March 2002, BBC

Worldwide Publishing

Author Biography

RICHARD VAUGHAN is a software development
consultant and lecturer with over 20 years of software
development experience. He can be contacted at
richardv@ratio.co.uk. He delivers a number of Ratio
training courses including:
• C++,
• High performance C++,
• Managed C++ under .NET,
• OOA/D using UML.
See back page (40) for further details.

 Page 11 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Le Meridien Palace Hotel, Manchester - UK May 20 & 21,
2003

Enterprise UML is the UK's premier annual UML conference

Featuring Case Studies from Lockheed Martin, Metropolitan Police and Tesco
This annual conference primarily showcases the use of UML in a wide variety of contexts. Dr. Richard Soley, Chairman
& CEO of OMG delivers the Keynote address on the future for UML and Steve Cook of IBM provides an overview of
the UML 2.0 metamodel and the process employed in its definition.

Topics featured in the conference include UML and Web Services, OMG's Model Driven Architecture (MDA), UML and
Agile processes, building Enterprise solutions with UML, Modelling with Templates in UML, UML and architectural
layering, Intelligent Agents and UML Models, and UML and data integration.

This conference is aimed at senior developers, analysts and designers of object and component-based systems, software
development managers, modelling professionals, consultants and software architects.

See http://www.ericleach.com/uml2003/ for full details
TO BOOK:

Telephone: +44 (0)20 8758 7587/7511
Fax: +44 (0)20 8758 7505

Email: eric_leach@compuserve.com

Recruitment Services from the OO experts

Ratio Group are the acknowledged leaders in OO in the
U.K.

• We are not an agency and our non-agency approach
to our recruitment service means we actually
understand the roles that we are asked to provide
candidates for,

• We are more than qualified (and we do!) to pre-
interview every candidate that we might put
forward, we won't send you hundreds of CVs, but
every candidate we do send you will have been pre-
interviewed by us and will be eminently suitable for
the role.

If you have a OO vacancy you need to fill call us on
020 8579 7900 or email us at info@ratio.co.uk

Vacancies from the OO experts

We frequently have vacancies for OO experts both
internally and for our clients, and on a contract or
permanent basis. People we are looking for now include

• OO Lecturers/Consultants in London and Southeast.
Skills needed include OO/UML/Java/C++/.NET

• Software developers Java, C++, min 3 years
software development experience

To apply for any role offered by Ratio email your CV
to jobs@ratio.co.uk

 Page 12 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Sharp intake of C – A C# Overview

C# is one of the family of languages Microsoft has designed
to be part of its .NET framework. In this article author JON
JAGGER gives a comprehensive introduction to C#.

Introduction

C# is a new language from Microsoft supported under
its .NET platform. .NET is Microsoft’s implementation
of the Common Language Infrastructure (CLI) ECMA
standard – a specification jointly submitted by
Microsoft, Intel, and Hewlett-Packard.

The CLI is designed for strongly typed languages and
has 5 partitions. Partition 1 specifies the CLI
foundation: the Common Type System (CTS), the
Virtual Execution System (VES), and the Common
Language Specification (CLS).

Compiling a C# program does not create a native
executable. Instead it creates a program in Common
Intermediate Language (CIL, specified in partition 3 of
the CLI). A compiled C# program also contains a block
of metadata (data about the program itself) called a
manifest (specified in partition 2). This metadata
facilitates powerful reflection capabilities.

The VES translates the CIL into native executable code
(which can be done just-in-time or at installation). The
CTS is a set of types to designed to allow language
interoperability. All CTS types are either value types or
reference types.

The CLS is a set of rules designed to allow language
interoperability. For example, unsigned integer types
are not in the CLS so your C# programs must not
expose unsigned integers if you want them to be fully
interoperable.

Hello World

The obligatory console Hello World in C# looks like
this:

class HelloWorld
{
 static void Main()
 {
 System.Console.WriteLine
 (“Hello, world!”);
 }
}

C# has a sensibly limited preprocessor. There are no
macro functions. What you see is what you get. A C#
source file is not required to have the same name as the
class it contains. Identifiers should follow the
camelCasing or PascalCasing notation depending on
whether they are private or non-private respectively.
Hungarian notation is officially not recommended.

C# is a case sensitive language so Main must be spelled
with a capital M. A C# program exposing two
identifiers differing only in case is not CLS compliant.
The CLS supports exception handling and C# accesses
these features using the try/catch/finally keywords.

Exceptions are used extensively in the SDK framework
classes. C# also supports C++ like namespaces as a
purely a logical scoping/naming mechanism. You can
write using directives to bring the typenames in a
namespace into scope.

using System; // System.Exception

class HelloWorld
{
 static void Main()
 {
 try {
 NotMain()
 }
 catch (Exception caught) {
 ...
 }
 }
 ...
}

C# Fundamentals

Figure 1 – Overview of C# types

 Page 13 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Numeric Types
C# supports 8 integer types (not all of which are CLS
compliant) and three floating point types – see figure 1.
The floating point literal suffixes for these three types
are F/f, D/d, and M/m (think m for money).

C# expressions follow the standard C/C++/Java rules of
precedence and associativity. As in Java, the order of
operand evaluation is left to right (in C/C++ it’s
unspecified), an expression must have a side effect (in
C/C++ it needn’t) and a variable can only be used once
it has definitely been assigned (not true in C/C++).

Checked Arithmetic
The CLS allows expressions or statements that contain
integer arithmetic to be checked to detect integer
overflow. C# uses the checked and unchecked
keywords to access this feature. An integer overflow
throws an OverflowException when checked. (Integer
division by zero always throws a
DivideByZeroException.) Floating point expressions
never throw exceptions (except when being cast to
integers). For example:

class Overflow
{
 static void Main()
 {
 try {
 int x = int.MaxValue + 1;
 // wraps to int.MinValue

 int y = checked
 (int.MaxValue + 1);
 // throws
 }
 catch (OverflowException caught){
 Console.WriteLine(oe);
 }
 }
}

Control Flow
C# supports the if/while/for/do statements familiar to
C/C++/Java programmers. As in Java, a C# boolean
expression must be a genuine boolean expression. There
are never any conversions from a built in type to
true/false. A variable introduced in a for statement
initialization is scoped to that for statement. C#
supports a foreach statement which you can use to
effortlessly iterate through an array (or any type that
supports the correct interface).

class Foreach
{
 static void Main(string[] args)
 {
 foreach (string arg in args) {
 System.Console.WriteLine(arg);
 }
 }
}

The C# switch statement does not allow fall-through
behavior. Every case section (including the optional
default section) must end in a break statement, a return
statement, a throw statement, or a goto statement. You
are only allowed to switch on integral types, bools,
chars, strings and enums (these types all have a literal
syntax).

Methods and Parameters
C# does not allow global methods; all methods must be
declared a struct or a class. C# does not have a C/C++
header/source file separation; all methods must be
declared inline. Arguments can be passed to methods in
three different ways:
• copy. The parameter is a copy of the argument.
The argument must be definitely assigned. The method
cannot modify the argument.
• out. The parameter is an alias for the
argument. The argument need not be definitely
assigned. The method must definitely assign the
parameter/argument.
• ref. The parameter is again an alias for the
argument. The argument must be definitely assigned.
The method is not required to assign the
parameter/argument.

The ref/out keywords must appear on the method
declaration and the method call. For example:

class Calling
{
 static void Copies (int param)
 {...}
 static void Modifies(out int param)
 {... }
 static void Accesses(ref int param)
 {...}

 static void Main()
 {
 int arg = 42;

 Copies (arg) ;
 // arg won’t change

 Modifies(out arg);
 // arg will change

 Accesses(ref arg);
 // arg might change
 }
}

C# supports method overloading but not return type
covariance. Unlike Java, C# does not support method
throw specifications (all exceptions are effectively
unchecked).

Value Types
C# makes a clear distinction between value types and
reference types. Value type instances (values) live on
the stack and are used directly whereas reference type
instances (objects) live on the heap and are used
indirectly. C# has excellent language support for

 Page 14 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

declaring user-defined value types (unlike Java which
has none).

Enums and Structs
You can declare enum types in C#. For example:

enum Suit
 { Hearts, Clubs, Diamonds, Spades }

You can also declare a user-defined value type using
the struct keyword. For example:

struct CoOrdinate
{
 int x, y;
}

Unlike C++, the default accessibility of struct fields is
private. You control the initialization of struct values
using constructors. You use the static keyword to
declare shared methods and shared fields. The readonly
keyword is used for fields that can’t be modified and
are initialised at runtime. The const keyword is used for
fields (and local variables) that can’t be modified and
are initialised at compile time (and is therefore
restricted to enums and built in types). As in Java, each
declaration must repeat its access specifier.

struct CoOrdinate
{
 public CoOrdinate
 (int initialX, initialY)
 {
 x = rangeCheckedX(initialX);
 y = rangeCheckedY(initialY);
 }
 public const int MaxX = 600;
 public static readonly CoOrdinate
 Empty = new CoOrdinate(0, 0);
 ...
 private int x, y;
}

The built in value type keywords are in fact just a
notational convenience. The keyword int (for example)
is an alias for System.Int32, a struct called Int32 that
lives in the System namespace. Whether you use int or
System.Int32 in a C# program makes no difference.

Operator Overloading
C# supports operator overloading. Enum types
automatically support most operators but struct types do
not. For example, to allow struct values to be compared
for equality/inequality you must write == and !=
operators:

struct CoOrdinate
{
 public static bool operator==
 (CoOrdinate lhs, CoOrdinate rhs)
 {
 return lhs.x == rhs.x &&
 lhs.y == rhs.y;
 }

 public static bool operator!=

 (CoOrdinate lhs, CoOrdinate rhs) {
 return !(lhs == rhs);
 }
 ...
 private int x, y;
}

Operators must be public static methods (so
polymorphism is never an issue). Operator parameters
can only be passed by copy (no ref or out parameters).
One or more of the operator parameter types must be of
the containing type so you can’t change the meaning of
the built in operators. The increment (and decrement)
operator can be overloaded and works correctly when
used in either prefix and postfix form. C# also supports
conversion operators which must be declared using the
implicit or explicit keyword. Some operators (such as
simple assignment) cannot be overloaded.

Properties
Rather than using a Java Bean like naming convention,
C# uses properties to declare read/write access to a
logical field without breaking encapsulation. Properties
contain only get and set accessors. The get accessor is
automatically called in a read context and the set
accessor is automatically called in a write context. For
example (note the x and X case difference):

struct CoOrdinate {
 ...
 public int X
 {
 get {
 return x;
 }
 set {
 x = rangeCheckedX(value);
 }
 }
 ...
 private static int rangeCheckedX (int arg)
 {
 if (arg < 0||arg > MaxX) {
 throw new ArgumentOutOfRange(
 “ x”
);
 }
 return argument;
 }
 ...
 private int x, y;
}

Indexers
An indexer is an operator like way to allow a user-
defined type to be used as an array. An indexer, like a
property, can contain only get/set accessors. For
example:

struct Matrix
{
 ...
 public double this [int x, int y]
 {
 get {
 ...
 }
 set {

 Page 15 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

 ... }
 }
 public Row this [int x]
 {
 get {
 ...
 }
 set {
 ...
 }
 }
 ...
}

Reference Types

Classes
Classes allow you to create user-defined reference
types. One or more reference type variables can easily
refer to the same object. A variable whose declared type
is a class can be assigned to null to signify that the
reference does not refer to an object (struct variables
cannot be assigned to null). Assignment to null counts
as a Definite Assignment. Classes can declare
constructors, destructors, fields, properties, indexers,
and operators. Despite identical syntax, classes and
structs have subtly different rules and semantics. For
example, you can declare a parameterless constructor in
a class but not in a struct. You can initialise fields
declared in a class at their point of declaration, but
fields declared in a struct can only be initialized inside a
constructor. Here is a class called MyForm that
implements the GUI equivalent of Hello World in
C#.NET.

using System.Windows.Forms;

class Launch
{
 static void Main()
 {
 Application.Run(new MyForm());
 }
}

class MyForm : Form
{
 public MyForm()
 {
 Text = captionText;
 }
 private string captionText =
 “Hello, world! ”;
}

Variables whose declared type is a class can be passed
by copy, by ref, and by out exactly as before.

class WrappedInt
{
 public WrappedInt(int initialValue)
 {
 value = initialValue;
 }
 ...
 private int value;
}

class Calling
{

 static void Copies (WrappedInt param) { ... }
 static void Modifies(
 out WrappedInt param
) { ... }

 static void Accesses(
 ref WrappedInt param
) { ... }

 static void Main()
 {
 WrappedInt arg = new WrappedInt(42);
 Copies (arg); // arg won’t change
 Modifies(out arg); //arg‘ll change
 Accesses(ref arg); //arg may change
 }
}

Strings
C# string literals are double quote delimited (char
literals are single quote delimited). Strings are reference
types so it is easy for two or more string variables to
refer to the same string object. The keyword string is an
alias for the System.String class in exactly the same
way that int is an alias for the System.Int32 struct.

namespace System
{
 public sealed class String : ... {
 ...
 public static bool operator==(
 string lhs, string rhs
) { ... }
 public static bool operator!=(
 string lhs, string rhs
) { ... }
 ...
 public int Length { get { ... } }
 public char this[int index]
 { get { ... } }
 ...
 public CharEnumerator
 GetEumerator() { ... }
 }
}

The String class supports a readonly indexer (it contains
a get accessor but no set accessor). The C# string type is
an immutable type (just like in Java). The string
equality and inequality operators are overloaded but the
relational operators (< <= > >=) are not. The
StringBuilder class is the mutable companion to string
and lives in the System.Text namespace. You can
iterate through a string expression using a foreach
statement.

Arrays
C# arrays are reference types. The size of the array is
not part of the array type. Rectangular arrays of any
rank can be declared (unlike Java which only supports
one dimensional rectangular arrays).

 int[] row;
 int[,] grid;

Array instances are created using the new keyword.
Array elements are default initialised to zero (enums

 Page 16 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

and numeric types), false (bool), or null (reference
types).

 row = new int[42];
 grid = new int[9,6];

Array instances can be initialised:

int[] row = new int[4]{ 1, 2, 3, 4 };
 // longhand

int[] row = { 1, 2, 3, 4 };
 // shorthand

 row = new int[4]{ 1, 2, 3, 4 };
 // okay

 row = { 1, 2, 3, 4 };
 // compile time error

Array indexes start at zero and all array accesses are
bounds checked (IndexOutOfRangeException). All
arrays implicitly inherit from the System.Array class.
This class brings array types into the CLR and provides
some handy properties and methods:

namespace System
{
 public abstract class Array : ...
 {
 ...
 public int Length { get { ... } }
 public int Rank { get { ... } }
 public int GetLength(int rank)
 { ... }
 public virtual IEnumerator
 GetEnumerator() { ... }
 ...
 }
}

The element type of an array can itself be an array
creating a so called “ragged” array. Ragged arrays are
not CLS compliant. You can use a foreach statement to
iterate through a ragged array or through a rectangular
array of any rank:

class ArrayIteration
{
 static void Main()
 {
 int[] row = { 1, 2, 3, 4 };
 foreach (int number in row) {
 ...
 }

 int[,] grid = {{ 1, 2 }, { 3, 4 }};
 foreach (int number in grid) {
 ...
 }

 int[][] ragged =
 {
 new int[2]{1,2},
 new int[4]{3,4,5,6}
 };

 foreach (int[] array in ragged) {
 foreach (int number in array) {
 ...
 }
 }
 }
}

Boxing

An object reference can be initialised with a value. This
does not create a reference referring into the stack
(which is just as well!). Instead the CLR makes a copy
of the value on the heap and the reference refers to this
copy. The copy is created using a plain bitwise copy
(guaranteed to never throw an exception). This is called
boxing. Extracting a boxed value back into a local value
is called unboxing and requires an explicit cast. When
unboxing the CLR checks if the boxed value has the
exact type specified in the cast (conversions are not
considered). If not, the CLR throws an
InvalidCastException. C# uses boxing as part of the
params mechanism to create type safe variadic methods
(methods that can accept a variable number of
arguments of any type).

Figure 2 – Boxing in C#

struct CoOrdinate
{
 ...
 private int x, y;
}
class Boxing
{
 static void Main()
 {
 CoOrdinate pos ;
 pos.X = 1;
 pos.Y = 2;
 object o = pos; // boxes
 ...
 CoOrdinate copy = (CoOrdinate)o;
 // cast to unbox
 }
}

Type Relationships

Inheritance
C# supports the same single inheritance model as Java;
a class can extend at most one other class (in fact a class
always extends exactly one class since all classes
implicitly extend System.Object). A struct cannot act as
a base type or be derived from. A derived class can
access non-private members of its immediate base class

 Page 17 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

using the base keyword. Unlike Java (and like C++) by
default C# methods, indexers, properties, and events are
not virtual. The virtual keyword specifies the first
implementation. The override keyword specifies
another implementation. The sealed override
combination specifies the last implementation.

class Token
{
 ...
 public virtual CoOrdinate Location
 {
 get {
 ...
 }
 }
}

class LiteralToken : Token
{
 ...
 public LiteralToken(string symbol)
 {
 ...
 }

 public override CoOrdinate Location
 {
 get {
 ...
 }
 }
}

class StringLiteralToken : LiteralToken
{
 ...
 public StringLiteralToken(
 string symbol
) : base(symbol)
 {
 ...
 }

 public sealed override CoOrdinate
 Location
 {
 get {... }
 }
}

Interfaces
C# interfaces contain only the names of methods.
Methods bodies are not allowed. Access modifiers are
not allowed (all methods are implicitly public). Fields
are not allowed (not even static ones). Static methods
are not allowed (so no operators). Nested types are not
allowed. Properties, indexers, and events (again with no
bodies) are allowed though. An interface, struct, or
class can have as many base interfaces as it likes.

interface IToken
{
 ...
 CoOrdinate Location { get; }
}

A struct or class must implement all its inherited
interface methods. Interface methods can be
implemented implicitly or explicitly.

class LiteralToken : IToken

{ ...
 public CoOrdinate Location
 // implicit implementation
 {
 get {
 ...
 }
 }
}

class LiteralToken : IToken
{
 ...
 CoOrdinate IToken.Location
 // explicit implementation
 {
 get {
 ...
 }
 }
}

You use the abstract keyword to declare an abstract
class or an abstract method (only abstract classes can
declare abstract methods). You use the sealed keyword
to declare a class that cannot be derived from. The
inheritance notation is positional; base class first,
followed by base interfaces.

interface IToken
{
 ...
 CoOrdinate Location { get; }
}

abstract class DefaultToken
{
 ...
 protected DefaultToken(
 CoOrdinate where
)
 {
 location = where;
 }
 public CoOrdinate Location
 {
 get {
 return location;
 }
 }
 private readonly CoOrdinate location;
}

sealed class StringLiteralToken :
DefaultToken, IToken
{
 ...
}

Runtime type information is available via the is, as, and
typeof keywords as well as the object.GetType()
method.

Resource Management
You can declare a destructor in a class. A C# destructor
has the same name as its class, prefixed with a tilde (~).
A destructor is not allowed an access modifier or any
parameters. The compiler converts your destructor into
an override of the object.Finalize method. For example,
this:

public class StreamWriter : TextReader
{

 Page 18 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

 ... ~StreamWriter()
 {
 Close();
 }
 public override void Close()
 {
 ...
 }
}

is converted into this: (You can use the ILDASM tool to
see this transformation in CIL.)

public class StreamWriter : TextReader
{
 ...
 protected override void Finalize()
 {
 try {
 Close();
 }
 finally {
 base .Finalize();
 }
 }
 public override void Close()
 {
 ...
 }
}

You are not allowed to call a destructor or the Finalize
method in code. Instead, the generational garbage
collector (which is part of the CLR) calls Finalize on
objects sometime after they become unreachable but
definitely before the program ends. You can force a
garbage collection using the System.GC.Collect()
method. C# does not support struct destructors
(although CIL does). However, C# does have a using
statement which you can use to scope a resource to a
local block in an exception safe way. For example, this:

class Example
{
 void Method(string path)
 {
 using (LocalStreamWriter exSafe =
 new StreamWriter(path))
 {
 StreamWriter writer =
 exSafe .StreamWriter;
 ...
 }
 }
}

is automatically translated into this:

class Example
{
 void Method(string path)
 {
 {
 LocalStreamWriter exSafe =
 new StreamWriter(path);
 try {
 StreamWriter writer =
 exSafe .StreamWriter;
 ...
 }
 finally {
 exSafe .Dispose();
 }
 }

 }}

which relies on LocalStreamWriter implementing the
System.IDisposable interface:

public struct LocalStreamWriter :
 IDisposable
{
 public LocalStreamWriter(
 StreamWriter decorated
)
 {
 local = decorated;
 }
 public static implicit operator
 LocalStreamWriter(
 StreamWriter decorated
)
 {
 return new LocalStreamWriter(
 decorated
);
 }
 public StreamWriter StreamWriter
 {
 get { return local; }
 }
 void IDisposable.Dispose()
 {
 local.Close();
 }
 private readonly StreamWriter local;
}

Applications

Delegates and Events
The delegate is the last C# type. A delegate is a named
method signature (similar to a function pointer in
C/C++). For example, the System namespace declares a
delegate called EventHandler that’s used extensively in
the Windows.Forms classes:

namespace System
{
 public delegate void EventHandler
 (object sender, EventArgs sent);
 ...
}

EventHandler is a now a reference type you can use as a
field, a parameter, or a local variable. Calling a delegate
calls all the delegate instances attached to it.

namespace Not.System.Windows.Forms
{
 public class Button
 { ...
 public EventHandler Click;
 ...
 protected void OnClick(
 EventArgs sent
)
 {
 if (Click != null) {
 Click(this, sent);
 // call here
 }
 }
 }

 Page 19 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

}

All delegate types implicitly derive from the
System.Delegate class. You use the event keyword to
modify the declaration of a delegate field. Event
delegates can only be used in restricted, safe ways (for
example, you can’t call the delegate from outside its
class):

namespace System.Windows.Forms
{
 public class Button
 {
 ...
 public event EventHandler Click;
 }
}

You create an instance of a delegate type by naming a
method with a matching signature and you attach a
delegate instance to a matching field using the +=
operator.

using System.Windows.Forms;

class MyForm : Form
{
 ...
 private void initializeComponent()
 {
 ...
 okButton = new Button(“OK”);
 okButton .Click += new
 EventHandler(this.okClick);
 // create + attach
 }
 private void okClick(
 object sender, EventArgs sent
)
 {
 ...
 }
 ...
 private Button okButton;
}

Assemblies
You can compile a working set of source files (all
written in the same supported language) into a .NET
module. For example, using the C# command line
compiler:

csc /target:module /out:ratio.netmodule *.cs

The default file extension for a .NET module is
.netmodule. A .NET module contains types and CIL
instructions directly and forms the smallest unit of
dynamic download. However, a .NET module cannot be
run. The only thing you can do with a .NET module is
add it to an assembly. An assembly contains a manifest
(a module does not). The manifest is metadata that
describes the contents of the assembly and makes the
assembly self describing. An assembly knows:
• the assembly identity

• any referenced assemblies
• any referenced modules
• types and CIL code held directly
• security permissions
• resources (eg bitmaps, icons)

You create a .NET DLL (an assembly) using the
/target:library option from the command line compiler
(there are various other options for adding modules and
referencing other assemblies):

csc /target:library /out:ratio.dll *.cs

You create a .NET EXE (an executable assembly) using
the /target:exe options on the command line compiler
(one of the structs/classes must contain a Main method).

csc /target:exe /out:ratio.exe *.cs

Assemblies comes in two forms. A private assembly is
not versioned, and is used only by a single application.
A shared assembly is versioned, and lives in a special
shared directory called the Global Assembly Cache
(GAC). Shared assembly version numbers are created
using an IP like numbering scheme:

<major> . <minor> . <build> . <revision>

Shared applications that differ only by version number
can co-exist in the GAC (this is called side-by-side
execution). The particular version of an assembly that
an individual application uses when running can be
controlled from an XML file. For example:

…
<BindingPolicy>
 <BindingRedir Name=”ratio” ...
 Version=”*”
 VersionNew=”6.1.1212.14”

UseLatestBuildRevision=”no”/>
</BindingPolicy>
...

You can edit this config file to choose your binding
policy. For example:
• Safe: exactly as built
• Default: major.minor as built
• Specific: major.minor as specified.

Attributes
You use attributes to tag code elements with declarative
information. This information is added to the metadata,
and can be queried and acted upon at translation/run
time using reflection. For example, you use the
[Conditional] attribute to tag methods you want
removed from the release build (calls to conditional
methods are also removed):

using System.Diagnostics;

 Page 20 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

class Trace
{
 [Conditional(“DEBUG”)]
 public static void Write(string message)
 { ... }
}

You use the [CLSCompliant] attribute to declare (or
check) that a source file conforms to the Common
Language Specification:

using System;

[assembly:CLSCompliant(true)]
...

You can use the [MethodImpl] attribute to synchronize
a method:

using System.Runtime.CompilerServices;

class Example
{

[MethodImpl(MethodImplOptions.Synchronized)]
 void SynchronizedMethod()
 {
 ...
 }
}

The attribute mechanism is extensible; you can easily
create and use your own attribute types:

public sealed class DeveloperAttribute :
Attribute
{
 public DeveloperAttribute(string name)
 {
 ...
 }
}
…
[Developer(“Jon Jagger”)]
public struct LocalStreamWriter : IDisposable
{
 ...
}

Summary
C# programs compile into Common Intermediate
Language (CIL). CIL types that conform to the CLS

(Common Language Specification) can be used by any
.NET language. For example, the types in the System
namespace are implemented in the mscorlib.dll
assembly. Programs written in C#, in VB.NET, or in
managed C++, can all use this assembly (there isn’t one
version of the assembly for each language).

CIL programs are translated into executable programs
either at installation time or just-in-time as they are
executed by the VES (Virtual Execution System). The
CLI (Common Language Infrastructure – the CTS, the
VES, the CLS, and the metadata specification) is an
ECMA standard and efforts are already underway to
implement the CLI on non Windows platforms (eg
http://www.go-mono.com).

C# is a modern general purpose programming language.
It has clear similarities to Java (reference types,
inheritance model, garbage collection) and to C++
(value types, operator overloading, logical namespaces,
by default methods are not virtual). It has no backward
compatibility constraints (as C++ does to C) and
avoids/resolves known problems in Java. The CTS
(Common Type System) makes a clear distinction
between value types and reference types. The more I
use C# the more I like it and the more I appreciate the
careful and consistent decisions taken during its design.
C# is my language of choice for .NET development. In
roughly keeping to the allotted word count I have
necessarily omitted numerous important aspects of C#.
Nevertheless I hope this article has given you a flavour
of C# and its relationship to .NET.

Author Biography

JON JAGGER is the co-author of Microsoft Press’s
Microsoft Visual C# .NET Step by Step. Jon wrote
and delivers the Ratio Group C# course, and also
lectures in OOA/D Using UML for Ratio. He can be
reached at jonj@ratio.co.uk.

C#.NET in 5 Days – A Hands On Training Course – See back page of this issue or
contact Ratio on 020-8579 7900 or info@ratio.co.uk

See also www.ratio.co.uk – training link

 Page 21 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Pearson Education books related to topics in this issue of ObjectiveView

From Java to C#

From Java to C#: A Developer’s Guide enables you to use your existing knowledge of
object-oriented concepts to learn C# efficiently and quickly. Features of C# that are
totally absent in Java are given the detailed description they warrant.

Use Case Driven Object Modeling with UML

Applied Use Case Driven Object Modeling with UML: An Annotated e-Commerce
Example provides a practical, hands-on guide to putting use case methods to work in
real-world situations.

Extreme Programming Explained

The book that started it all off.

Questioning Extreme Programming

After reading this thought-provoking book, software developers can make informed
decisions about Extreme Programming, and whether it is suitable for their organization.
Readers will also be able to determine whether Extreme Programming is inappropriate
for a particular project. The author challenges you to look past the hype and start asking
the hard questions about how software is built

Extreme Programming Perspectives
Extreme Programming Perspectives presents 47 articles that represent the insights and
practical wisdom of the leaders of the XP community. Encompassing a wide variety of
key topics on XP and other agile methodologies, this book offers experience-based
techniques for implementing XP effectively and provides successful transitioning
strategies.

See also - A Pattern Language for Web Usability

A Pattern Language for Web Usability is a practical guide for web designers and
managers of website development projects and can be used as a simple checklist to aid
the design process and ensure that websites are usable and successful.

Go to www.ratio.co.uk/bookstore.html to purchase these books at a discount.

 Page 22 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Interview - Refactoring Extreme Programming

MARK COLLINS-COPE interviews DOUG ROSENBERG (author
Use Case Driven Modeling with UML) and MATT STEPHENS
(co-author with Doug of the book XP Refactored - due for release
in Summer 2003), on their objections to Extreme Programming.

 Matt Doug

[Mark Collins-Cope] Hello Matt and Doug,
{Doug Rosenberg and Matt Stephens] Hello Mark,

General
[Mark] Doug, you’ve been vocal in your opposition to
XP for some years yet, so I don’t think it’ll come as a
great surprise to many people you’re authoring a book
called XP Refactored. As a starting point for this
discussion, could you summarise the message of the
book for us, then perhaps we can delve into the issues
you raise in more detail.

[Doug] To start with, the complete title (which is “XP
Refactored – The Case Against Extreme
Programming”) will give you an idea of what Matt and
I are doing. By way of background, I got engaged in
the XP debate originally on OTUG (the Object
Technology User Group), mostly with Bob Martin and
Ron Jeffries a few years ago (this culminated in quite
an intense discussion about the Chrysler C3 project,
and whether its cancellation meant success (as they
claimed) or failure (as it seemed to many of us).
Subsequently I’ve made a few attempts at satirical
humor that have been pretty well received, notably
“Alice in Use Case Land” which was a keynote speech
I gave at UML World and recently repeated at the
Rational User Conference, “Fragile Methods” which
was a talk I gave at SD West, “Emperor’s New Code”,
and then my son Rob and I have a lot of fun rewriting
old Beatles songs, which we’ve compiled into “Songs of
the Extremos.”

I ran across Matt’s article “The Case Against Extreme
Programming”, in which he systematically picks apart
much of the XP hype and circular logic, step-by-step,
piece-by-piece, and often in a hysterically funny way,
about a year or so ago. I was reading his discussion
related to those who have never done pair
programming having no right to say they wouldn’t like
it, when suddenly I read a line that started me laughing
so hard it brought tears to my eyes, and I knew then we
had to write a book together. You’ll have to read the
article to know the line that I mean, it starts out “I have
never dipped my head in” Matt and I met earlier this
year over in England, and I told him that writing that
line was going to change his life. He told me he had
agonized over whether he should pull it out of the
article. Good thing he left it in.

So the book is based around many of the points in
Matt’s “Case Against” article, with a whole chapter
showing some pretty amazing hype vs. reality
statements about the C3 project (to paraphrase
Churchill: “never has so much hype been achieved by
so few over such a dismal failure”), and we’ve tried to
bring this off with as much humor as we can.
Sometimes the humor is as simple as taking self-
contradictory quotes from XP Gurus and placing them
next to one another (sometimes the quotes seem really
funny to us on their own like for example "schedule is
the customer's problem", and “Extreme Programmers
are not afraid of Oral Documentation”), and sometimes
we make pretty intensive use of satire and sarcasm.

But underneath it all we are exposing some very real
weaknesses about XP, such as (to pick one that we’ve
currently been discussing) the continuous delegation of
responsibility for minor items like requirements
management and project schedule away from the
programming team, and onto the “customer”. So the
(overloaded) onsite customer becomes a single-point of
failure, while the programmers just keep on refactoring
away and go home at 5PM every day. Another big
issue that we both have is the expressed and implied
opinion that upfront thought in software development is
somehow a waste of time, and that the lack of upfront
thought is compensated for by short-iterations and
refactoring. These are just a couple of issues we’ll be
addressing.

Process and notation
[Mark] I put this question to Robert Martin in a
previous interview – I’m interested in your response…
“Process is a hot topic in the software development
community at present. We have RUP, Iconix, XP etc.,
all of which seem to offer something of a contradictory
view of the world. What is the average software
developer or manager supposed to make of this? Is
there such a thing as a right and a wrong approach to
software development?”

[Doug] Well, our friends at Rational would tell you that
RUP’s view of the world can be tailored to fit just about
anything, and they have actually done some pretty
interesting work in making the RUP easier to tailor. In
fact, we’ve recently released an “ICONIX Process”
plug-in for RUP, which essentially installs the approach
I wrote about in “Use Case Driven Object Modeling”

 Page 23 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

into RUP for you in about 10 minutes (and deletes a lot
of stuff out of the RUP installation) – we call it
QuickStart.

Also, I believe ObjectMentor has recently produced a
RUP plugin for XP. The concept of a RUP plugin for
XP is very amusing to me. I am not certain about this
but I think the XP plugin pretty much deletes all the
analysis and design activities. I personally don’t think
there’s a snowball’s chance in hell of your average
extreme programmer buying a copy of RUP, but the
existence of an XP plugin for RUP serves to legitimize
XP as a “real process” in the minds of some folks, I
guess.

[Mark] So XP is now an instance of RUP, the ICONIX
process is now an instance of RUP… seems like RUP is
definitely all things to all men ☺! Can such a wide
reaching process really be of value?

[Doug] Yeah… the whole world is an instance of RUP.
Except that I don’t think RUP is an instance of RUP.
RUP is a process framework, not a process instance :)
Seriously, though, we built our plugin because ICONIX
Process is a streamlined path through use cases and
UML, we’ve got a lot of clients that use Rose for UML,
and we thought it would be beneficial to be able to
“install” the process from “Use Case Driven Object
Modeling” into a RUP installation. I think having a
process that everyone on the team can access via a
website is a useful thing, especially so on larger
projects. Actually, I’d prefer to stop short of saying
that our process is an instance of RUP – I’d say that
you can install our process into RUP quickly and easily
and sort of change RUP’s personality with this plugin
technology. It’s a pretty cool concept really, you build
a UML model of your process (mostly activity diagrams
for the various steps), run it through the RUP Builder
tools and it produces a file which you can install into
RUP which changes what your RUP installation looks
like. I think that the plugin concept is useful because
you can set up YOUR process and use RUP as a vehicle
to deploy it. So yes, I think there’s value in there.

[Mark] The UML notations have become popular over
the last few years, to the degree that there are now many
tool vendors out there selling tools to support it. In
some ways I can see XP is a reaction to increased
marketing pressure from these companies – “you must
have a tool to develop software.” Isn’t it true you can
develop software quite adequately without highly
expensive tools and that XP shows the way in doing
this?

[Doug] UML doesn’t necessarily require an expensive
tool. We teach a lot of classes with Visio these days,
for example. And I taught one class recently where
people posted “sticky paper” all over the walls and
drew UML diagrams on them with markers, then had
one person scribe them all into Visio. It’s the thinking

that goes into the UML model before you jump into
code that’s really important. I don’t think anyone will
ever convince me that software development is more
likely to be successful by eliminating forethought,
although I have seen the argument made.

[Matt] The design process itself certainly doesn’t need
any software tools, expensive or otherwise. It does pay
to write up the design afterwards though, because this
in itself is a form of design review – an extended
thought process. You might write up the design using
Word and Visio, or Rational Rose, or whatever fits your
company’s budget. For example, I’m currently involved
in a project where a lot of our design work is being
carried out by sketching lines and boxes on
whiteboards. Sometimes this is UML, other times it’s
ad-hoc notation. Whatever fits the thought process at
the time. So paper and pen, or whiteboard and marker,
are essential tools in the design process. But at some
stage you need to use a software tool to document your
design, so that other people can read, understand and
review this thing that you’re planning to implement.

In fact, I often think of better designs, or flaws in the
current design, whilst documenting the design. There’s
something involved in this whole process that is
effective in producing a good, simple design before you
start writing production code. Sure, the design is under
constant review whilst coding too – but that up-front
design & review process saves us a lot of refactoring
later. We can only do that with proper design
documents – which don’t take very long to write
anyway. The trick is to document just enough to be able
to move forward safely. The larger amount of time is
spent coming up with the design, not documenting it.

[Mark] But isn’t “just enough” what XP recommends as
well?

[Matt] Unfortunately, “just enough” is quite a
subjective measurement. Just enough for what? That all
boils down to your own view of which practices (or
inactions) increase software risk, which practices
decrease it, and what the acceptable level of software
risk should be. Documenting just for the sake of it
increases risk because it’s yet another document to
maintain, and you might not really gain anything from
doing it. When writing up your design, you need to have
a set of guidelines in the back of your mind. For
example, the Agile Modeling (AM) principle Model
With a Purpose – if you do it right, you definitely get
more out of documenting your design than what you put
in. That same AM principle also recommends that you
know your audience, so that you write up your design in
the format that best suits them. This is where XP errs –
their belief is that source code is the clearest expression
of the design if your audience is a programmer. Sure,
it’s the most “truthful” documentation of a design,
because the design “is” whatever the code does, but it
may not be the most expressive. Also, who’s to say that

 Page 24 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

your code is infallible? Just because the code does
something, and passes a few unit tests, doesn’t mean
that this was what it’s really supposed to be doing.
Source code is too complex to be a clear statement of
intent. We need something simpler than code and unit
tests to define our design – a Word document, or a class
model, for example.

[Mark] Isn’t it true that some very good software
engineers just aren’t happy with graphical notations?
Isn’t XP a good solution for these people?

[Doug] I believe there are people who can write
efficient code and don’t like graphical notation. I
would stop short of calling these people “good software
engineers”. I actually have an engineering degree (in
Electrical Engineering). Nobody would ever have
graduated from the EE program I went through if they
couldn’t read and write schematic diagrams. These
diagrams are enormously useful in the communication
of ideas about a system under development. Schematics
and logic diagrams for circuits, UML for software. It’s
all part of the job.

[Matt] UML, or whatever graphical notation you’re
using, has its place even in an XP project. The
difference is simply in the amount to which the
graphical designs are utilised. Having said that, I find it
inconceivable that someone who can’t visualise designs
could decide to become a programmer. The industry is
moving ever further towards using modeling tools as a
way of producing working code. CASE tools are
becoming better at generating source code; TogetherJ
has been generating Java class skeletons from UML for
years. The difference now is that these generators, such
as Sun’s ACE project, are promising to create
complete, working code from a graphical business spec.
Enterprise tools such as Javelin Software’s JGenerator
are generating complete applications from textual
notation already. The ironic thing is, these tools, which
involve big up-front requirements gathering and big up-
front design, are enabling projects to be much more
agile, not less. This is because the generators
encapsulate the entire architecture. Should I generate a
dotnet solution? Hang on, I’ll change this attribute and
generate a J2EE solution instead… Okay, so we’re
probably not quite at that level of flexibility yet, but like
it or not it’s the way the industry is going! If a person
can’t visualise a design, they shouldn’t be a
programmer – and they definitely won’t stand a chance
in a few years’ time…

Software Architecture
[Mark] One criticism you’ve levelled at XP is its
concept of an emergent architecture – an architecture
evolving over multiple iterations of a project. Isn’t this
a much more realistic view of architecture as it is used
in practise?

[Doug] Not to me. Perhaps this relates to having some
clients in the aerospace industry. I’ve worked on,
trained people and provided tools to people on ballistic
missile defense projects, the Space Station, the Hubble
telescope, avionics systems, helicopter projects, military
flight planning systems, command and control systems,
etc. I was talking to a client of mine from a very large
jet fighter project yesterday and I suggested they let the
architecture of the fly-by-wire system evolve
incrementally. We got a good laugh out of it. I think if
people on these kinds of projects can manage to
develop architectures and then design within the
architecture, people doing business or e-commerce
systems can, too.

I can see, on small projects, where letting some
portions of the architecture evolve a bit during a series
of incremental builds, might be a workable strategy, but
if you read the Wiki Web you find a quote by Kent Beck
suggesting that “the bigger the system the more you
need emergent architecture”. As with many such
quotes, it just leaves me shaking my head.

[Matt] Emergent architecture can work, but as Doug
suggests this is only for small-scale projects. You could
perhaps get around this by dividing a project’s
architecture into smaller sub-architectures, then letting
those evolve incrementally; but then there’s not likely to
be any real cohesion between the different parts of the
project. Especially when multiple teams are involved,
you end up with an “alphabet-Spaghetti” architecture
where nothing quite fits together properly. You could
counter this effect by adding in extra layers of process
and documentation, but then you end up losing the
supposed benefits of XP. It’s much better to begin with
a process that is designed to scale up in the first place.

[Mark] XP has the idea of a system metaphor to
replace architecture. Is this not perhaps a better
approach that rather ill defined “boxes and lines with
pretty pictures of PCs approach” to architecture we see
in being used in many organisations? Most of these type
of diagrams have no meaning whatsoever.

[Doug] As I understand it, the XP system metaphor
maps fairly closely to what we call a “domain model” –
that is, you’re identifying some of the more important
nouns (conceptual objects) in the problem domain.
Except a domain model (which is a simplified UML
class diagram) is quite a bit more precise than a system
metaphor. And the technical architecture tends to
evolve out of this domain model but includes quite a bit
more detail depending on things like the programming
language, the GUI toolkit, the underlying database, the
communication protocol, etc. etc. of the system.

[Matt] The System Metaphor is a useful thing to have,
even in non-XP projects. It’s quite loosely defined in the
XP books, so you could (for example) apply the

 Page 25 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Metaphor principles to domain modeling, to come up
with a consistent set of object names and descriptions.
If you’re following the ICONIX process, you would be
doing this anyway. All subsequent documentation and
code is then written in the context of the domain model.
On its own though, XP’s Metaphor is simply not enough
to guarantee consistency and cohesion across different
parts of the project. For that you would need a proper
design, one that’s written down.

[Mark] But coming back to the point about many
architecture “diagrams” being boxes and lines with little
or no semantics, what are we to do about describing
architecture (assuming we can actually agree what it is
☺)

[Doug] Well, for myself, I’m happy seeing the use
cases, domain models, robustness diagrams and any
other supplementary diagrams that the architects feel
are useful. I have no problems with boxes and lines
without precise semantics. Architects renderings of
buildings don’t have real precise semantics either, but I
can appreciate their value.

Design
[Mark] 'Do the simplest think that could possibly work'
is the design maxim of XP. Software engineers are
renowned for over-engineering solutions – a solution
looking for problem – and doesn’t this XP maxim have
an appropriate place in any software process?

[Matt] Simplicity rules. If only the designers of the EJB
spec had thought about this some more. However, it’s
possible to take simplicity a bit too far. With XP, what
you end up with is an evolutionary prototyping
approach, where you are simply designing in what you
think you need for the software to work right now. The
problem is, prototypes tend towards the incomplete. To
take a use case analogy, prototypes tend to be the
“happy day” scenario. None of the difficult stuff, like
what happens when things go wrong, what happens
when the user makes a mistake or decides to do
something valid but unexpected – typically 80% of an
application – gets factored into the prototype. The
difficult, hidden stuff – stuff that doesn’t appear to be of
value to the customer, but which will come back to bite
you if you don’t put it in – gets left out, because the
team are just interested in getting something working
right now and shipping it to the customer.

[Doug] Well, there are many variations on this theme.
KISS (Keep It Simple, Stupid) is one of them. And
keeping it simple is, of course, a good idea in most
cases. But let’s examine the phrase “the simplest thing
that could possibly work”. Think carefully about what
this means. This phrase goes beyond normal “keep it
simple” advice. There’s a quote from an old
“Distributed Computing” article about the Chrysler C3
project (this was one of the articles that put XP on the

map) where the intent is stated more specifically: “We
do not build generality into the system in expectation of
future requirements. We build the simplest objects that
can support the feature we’re working on right now.”

This is a very very different idea from just “keeping it
simple”. This says “don’t think ahead about other
requirements, just slap some code together for what
you’re building RIGHT NOW”. This advice, in the
hands of most programmers that I’ve ever met (and I
earned my living writing code for about 15 years), can
prove to be incredibly dangerous. What the Extemos
ask you to believe is that “constant refactoring after
programming” (do your own acronym) makes that all
OK. It’s OK to hack stuff together with rubber bands,
bubblegum, and scotch tape today because you’re going
to refactor it tomorrow anyway. Uh-uh. Not for me.

What gets even more fascinating, is that this very same
article claimed that C3, which was a Y2K project to
replace Chrysler’s mainframe payroll systems before
Jan 2000, would be paying 86,000 employees at
Chrysler by mid-1999. This was a somewhat audacious
claim of success before success was actually achieved.
In actual fact, when C3 was cancelled in Jan 2000, it
was only paying 10,000 employees (the same as when
the article had been written a year or so previously). I
recommend that everybody read the page called
CthreeProjectTerminated on the Wiki Web for
themselves. Hopefully we can provide some URLs for
your readers at the end of this interview.

So, in fact, “doing the simplest thing that could possibly
work” didn’t work. Doing the simplest thing that could
possibly work did just about what you’d expect: it
generated a quick illusion of success, which couldn’t be
sustained. What makes the XP phenomenon so
amazing, is the success they had in creating the
impression of success, when in fact it had not been
achieved. We saw articles like Chet Hendrickson’s
“DaimlerChrysler: The Best Team in the World”
appearing in IEEE Computer Oct. 1999 (this would be
about 2 months before project cancellation). But where
the XP hype machine truly outshines all competition is
in managing to sustain this hype AFTER the project got
cancelled. Matt found an article from “The
Economist” published in December 2000 (almost a full
year after cancellation) that cites C3 as a success,
claiming that it was paying 86,000 employees at
Chrysler, and attributing its success to Mr. Beck. We
wonder about how stuff like that gets printed. Certainly
when I got involved in the debate on OTUG (after
reading about C3’s cancellation on the Wiki Web),
vociferous claims were still being made about what a
success it was. And, of course, you know that most of
the XP authors (Beck, Jeffries, Hendrickson, Wells, etc.)
came from the C3 project.

 Page 26 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

[Mark] So you have no objection to simplicity, but you
dislike the minimal window of lookahead in XP, is that
right?

[Doug] I guess that’s a fair statement. Simple designs
are good. Turning a blind eye towards future
requirements and reciting YAGNI instead of building
infrastructure is not so good, as far as I am concerned.

[Mark] The XP approach to design is to let it emerge
over time, based on refactoring to meet new
requirements as they become available. XPers are
particularly anti- Big Design Up Front (BDUF). Isn’t
this antagonism to BDUF justified – hasn’t experience
shown that spending ages on design upfront is mostly a
waste of time as by the time implementation comes
around, the requirements have changed and the design
is no longer valid.

[Matt] Shifting requirements is a universal issue that is
faced by both XP and non-XP projects. The solution is
pretty much the same in both cases – you reduce the
risk by breaking the project into smaller iterations. It
reduces the “big bang” delivery that project managers
and customers equally dread.

Shorter iterations also means that there’s not too much
of a BDUF feel, or a waterfall feel, to the whole
process. Scrum has it about right with their 1-month
Sprint. XP’s 2-3 week iteration is pushing it a bit, but
certainly isn’t the worst aspect of XP.

Each deliverable may or may not be intended for end-
users at that stage. If it is (which XP recommends), then
the problem of course is that the project goes into
maintenance mode very quickly, before maybe 10 or
20% of the overall functionality has been written. From
that point on, inevitably development slows down,
because you’ve got an installed user base, and letting
the design emerge over time suddenly doesn’t seem like
such a good idea. Changes to the design, or to the
overall architecture, have untold complications when
you have users to support and retrain, legacy data to
maintain, help files to update, data migration scripts to
test. The best way to counter this problem is to get the
design right up-front – or at least as right as you can
get it. Sometimes there’s no getting away from it: this
involves thinking ahead, beyond the next increment.
Getting it right means spending more time on it than XP
recommends.

[Doug] My personal experience in developing software
has always been that an hour spent in thinking about
the problem upfront saved at least 3 hours in coding
and testing. But it is also possible to carry upfront
design to an extreme, which results in what we call
“Analysis Paralysis”. But it’s actually pretty
straightforward to do upfront analysis and design
without catching a case of analysis paralysis. That’s
what “Use Case Driven Object Modeling” is all about.

We’ve had many discussions on this, I think Matt has an
acronym EDUF for Enough Design Up Front, which is
what we’re generally looking for. Rob and I have a
song about the Extremo mindset here… .it goes to the
tune of “Nowhere Man” by the Beatles… .and it starts
out “Here’s a cool project plan… ..jump to code quick
as you can… .don’t need no requirements from nobody”

[Mark] So how do you know when you’ve done
“Enough Design Up Front?”

[Doug] Well, at the risk of repeating what I’ve written
in my first two books; I want to know what the required
behavior is for all the scenarios we’re going to
implement, I want to know what the domain objects are,
I want a reasonable effort made to identify “rainy day
scenarios”, exceptional behavior, what we call
‘alternate courses of action”, I want to see the scenario
descriptions validated with a robustness diagram, and
then a sequence diagram that shows me how the objects
communicate at runtime. It really isn’t that imposing a
list of things to do. I’ve been teaching people to do this
for 10 years now. Generally, if you understand what
you’re going to build, you should be able to write a 2
paragraph use case description in 15 minutes or so,
spend another 10 minutes checking that you’ve got it
right with a robustness diagram, then maybe half an
hour on a sequence diagram. So if you invest about an
hour per scenario that you’re going to build, the time
payback is usually several multiples of that hour. Of
course if you don’t understand the behavior
requirements, it takes longer because you have to find
out what the behavior is supposed to be. But I’d rather
know that before I’ve coded the thing up.

Refactoring
[Mark] Isn’t it true that until XP came along – everyone
simply ignored the fact that on any iterative/incremental
style project (and during maintenance on waterfall style
projects) refactoring is a necessary fact of life. Put
another way, design is an optimisation problem
whereby we come up with a solution that fits a
particular set of requirements. Next iteration, we have
new requirements and our previous design is going to
be sub-optimal. We must refactor if we’re going to stop
software rot setting in – no?

Also, in most software engineering projects there is a
learning process being undertaken by the team. They
may be learning the domain, they may be learning new
technology, and so on. Isn’t refactoring important given
this context – as we learn we realise we can do things in
better ways – so shouldn’t we update our code to reflect
this?

[Doug] Refactoring definitely has its place. I’m not
against refactoring in general, I’m against refactoring

 Page 27 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

as a replacement for upfront design. I’m against the
mindset that we call “Constant Refactoring After
Programming”, wherein the goal is to get the simplest
thing that can possibly work up and running ASAP, and
then refactor the design into existence. Refactoring is
not evil, but refactoring is a poor replacement for
forethought.
[Mark] So you would agree that XP is the process that
has put refactoring onto the software agenda – and as
such it has made a valuable contribution?

[Doug] I’m quicker to agree with the first part of your
sentence than the second part. I don’t see the adoption
of refactoring as a replacement for upfront design as a
valuable contribution. I think if refactoring is used as a
supplement to a reasonable amount of upfront design,
then refactoring can be useful. I don’t think XP uses
refactoring that way, and so I regard XP’s contribution
in this area to be a net loss rather than a net gain. I do
think XP has done something genuinely useful in putting
unit testing on the map in a big way, though, if that
helps at all.

Team and personnel issues
[Mark] Pair programming is another contentious aspect
of XP. Aren’t there substantial benefits to pair
programming – in terms of transfer or knowledge and
skills, in terms of “the whole is greater than the sum of
the parts”

[Doug] I don’t have a problem with people working in
pairs if they voluntarily want to work that way. So I’d
never prohibit pair programming. But having worked
as a programmer for 15 years, I place a pretty high
value on peace, quiet, and space to think in. I once saw
a study from, I think it was IBM Santa Teresa labs,
where they found that putting programmers in private
offices with doors that closed was a huge boost to
productivity over cubicles. So the idea of all the
programmers in a big room seems like it would be a
huge detriment to productivity, to me. I think it would
drive me nuts, personally.

I’ve also worked with some incredibly talented
programmers who would have been awful to pair with.
One in particular comes to mind who was hypoglycemic
and had a tendency to get upset very easily when his
blood sugar dropped. He’s a brilliant programmer and
produces prodigious amounts of code, which is always
efficient and well structured. He and I worked very
well together but I would never dream of sharing a desk
and a keyboard with him. And I’d resist any process
that wouldn’t allow me, as a manager, to make use of
his skills. So I would never mandate pair
programming.

And of course, my big issue with XP’s approach is that
pair programming is used as an excuse for not doing

upfront design. That’s completely bogus, in my
opinion.

[Mark] The XP approach to roles (architect, lead
designer, etc) is to either not have them, or to allow the
roles to emerge (that word gets used a lot ☺) naturally
within the team. Surely this is better – from a team
perspective – than assigning magnificent titles to people
before they’ve proved their worth on the team.

[Matt] [laughs] Hopefully they’ve proved their worth
somewhere in the company to get that magnificent
title… Actually, a nice aspect of XP is that the
individuals get to sign up for the tasks that interest them
the most in each increment, so their natural role in the
team really does emerge. I would recommend doing
that in any project, XP or otherwise – letting people
identify the things that interest them the most. People
are much more highly motivated when they are good at
what they are doing, hence more productive. Of course
you have to draw the line somewhere though: there are
always “chores” that somebody just needs to knuckle
down with and get done. And an added danger is that in
a roomful of programmers, no one wants to do design,
or test what they’ve written, or write things down. They
just want to get coding: everything’s a prototype,
nothing is customer-facing, unless they are told
otherwise. Sometimes you need someone in a position of
higher authority (a team leader, say) to make sure the
not-so-fun stuff gets done too. Otherwise, it’s like
having a house full of kids who are allowed to watch TV
and eat ice-cream all day, but the washing-up never
gets done…

[Mark] Sounds like my house actually… But
Isn’t the XP approach to development, whereby
something is being delivered all the time, highly
motivating to software engineers – who after all like to
“make something.” Isn’t this one of the strongest
arguments for a highly incremental evolutionary
approach to creating software. Surely a well motivated
team will always produce a better product than a badly
motivated team, regardless of the process being used?

[Doug] Well, by that reasoning we could provide free
beer and dancing girls to help us produce a better
product. Hey, you know … we might be onto something
here. Seriously, it’s great to motivate people. Oddly
enough, I find the people that I teach are often highly
motivated to learn some techniques that help them to do
a better job. These folks generally have realized that
it’s not all about code, and that there are really more
than 4 important things about software… that
requirements matter, that schedules matter, etc. There
are lots of ways to motivate people. And I’m certainly
not against getting something built. My own preference
is not to build the same thing 15 times, though.

 Page 28 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Integration
[Mark] Doesn’t XPs emphasis on continual integration
have many benefits – in that any 'integration errors' will
come fairly quickly to the attention of the team.

[Matt] A daily build is definitely a good thing to do.
Scrum recommends doing that, for example. It’s true
that if you leave integration for too long, the codebase
starts to diverge, and it becomes increasingly difficult
to fit things together. In my mind, XP’s approach of
integrating as often as possible takes things a bit too far
though. I believe that you get diminishing returns. Even
if the build & integration process is really quick – say,
5 minutes – it’s still more time than no time at all. It all
mounts up. If the team is communicating well anyway,
and the design is well defined, code divergence
becomes less of a problem – in which case, getting
everyone to integrate once a day is plenty.

Testing
[Mark] XP has a strong focus on automated functional
and unit testing, and related practises like test first
programming. Isn’t this a good thing, and in particular
doesn’t test first programming make developers think
through class and/or component interface designs
thoroughly before implementing them. In other words –
doesn’t test first programming ensure a focus on clean
interface design and cut down the amount to which
interfaces are polluted by implementation details?

[Doug] You know, I’m a big fan of unit testing, and I
think the increased emphasis on rigorous and
automated unit testing is absolutely the best thing to
come out of the whole XP phenomenon. I don’t have
anything in particular against writing the test before
writing the code (the way we teach use cases is to write
the user manual before writing the code, so it’s kind of
familiar in a way) although I think that writing the test
first is less necessary if you’ve done a good design
using, let’s say, sequence diagrams and class diagrams,
and I definitely do not agree that writing the test first is
an adequate replacement for forward-looking OO
analysis and design. And this point (that the unit test is
the design) is where I have a difference in philosophy
with the Extremos. We call this “Design After First
Testing” (roll your own acronym again).

So, unit testing: a very important and very good thing.
Automated test suites: also good and important.
Writing the test before the code: fine by me. Unit tests
as a replacement for design: nope.

It’s interesting. Way back when XP first came out, I
proposed combining the front-end use case driven
OOAD approach that I follow with XP’s back end code
and test techniques. And I still think this is where the
industry will wind up eventually.

When I proposed this synthesis of ideas on OTUG, as I
recall, I received a personal response from Mr. Beck
whose tone I found somewhat surprising, informing me
that all the XP techniques had to be used together as a
set, and by-the-way, how much code had I ever written,
anyway. For about 3 days afterwards, I kept getting
offline EMAILs from extremo fanatics asking me how
much code I had ever written. They all went away when
I informed them that I had been employed as a
programmer for about 15 years. But it was my first
introduction to the Extremo culture of attacking the
character of anyone who dared disagree with their
point of view.

But I still think that the combination of a use-case
driven approach from the front and the aggressive unit
testing on the back would make for a successful project.
And, as I said,our next book: “Agile Modeling with
ICONIX Process” will be expanding on this theme.

As we’ve been doing this, a song that Rob and I have
been working on for the last couple of days has been
running thru my head (not even Matt has seen this one
yet, it’s new, but it hits a few of the points we’ve been
discussing). If you have space, maybe your readers
might get a kick out of this one… .it’s called Unit Test
Writer, and it goes to the tune of “Paperback Writer”
by the Beatles.

Unit Test Writer

Don’t like UML
Man it’s much too hard
Rather scribble some notes on an index card

Hey design is dead
And things couldn’t be better
I just got a job
And I’m gonna be a unit test writer
Unit test writer
Unit test writerrrrrrrr

Well, requirements
Are a pain in the neck
Good thing that I found this book by Kent Beck
They’re the customer’s problem
It says so right here
So I don’t care too much
Cause I’m gonna be a unit test writer
Unit test writer
Unit test writerrrrrrrr

Don’t do architecture
Haven’t got the urge
Rather just write code and let it emerge
At 5PM each day
You know I’m on my way
Schedule’s not our job
Man it’s fun to be a unit test writer
Unit test writer

 Page 29 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Unit test writerrrrrrrr

I think that kind of sums quite a few thing up. And, if
you enjoyed that, you’ll definitely like the book..

Documentation
[Mark] 'The code is the documentation' Is an XP
maxim. Isn’t it true that most project documentation
gets to be so completely out of date as to be damaging,
and that therefore it’s a waste of time producing it in the
first place.

[Doug] Here’s one of my favorite stories. A couple of
years ago, Mark, you published an interview with
“Uncle Bob” Martin where he stated “Extreme
Programmers are not afraid of Oral Documentation”.
This is one of my favorite extremo quotes of all time. It
disguises an attitude that I’d sum up as “we’re too lazy
to document our work” and makes it sound like this is
somehow an act of bravery and courage. What a load
of crap! So here’s the story… this article came out
about 3 years ago, because my son Rob was about 10
years old then, and he was sitting in my office after
school when he saw me busting a gut laughing at this
line. A couple of days later I’m driving him to school in
the morning when he asks me “Dad, is oral
documentation oxymoronic… ..or is it just plain
moronic?” I quoted him in one of my UMLWorld
keynote speeches and the whole audience broke up
laughing.

The next year at UMLWorld I was on a panel that
included Uncle Bob and Martin Fowler, and the subject
came up again, from the audience. I remember getting
my speaker evals back from that panel and seeing one
that said “Panel members, except for Doug, have lost
touch with reality”.

Freedom from documentation is, however, almost
certainly one of the prime factors in XP’s wild
popularity among cowboy coders. These are the folks
who say they are doing XP, but aren’t pair
programming, nor unit testing, etc. They’re just
“bravely” not documenting their work.

[Mark] But coming back to my point, isn’t the issue of
documentation becoming out of date very quickly one
of genuine concern? What are we to do in these
circumstances – spend valuable time updating the
documents or get on with more development? Isn’t
there a ‘half way house’ whereby just a minimal set of
documentation can be maintained, with other
documents being discarded having served their purpose
of either helping us think issues through, or helping us
communicate across the team?

[Doug] I’m pretty much a minimalist. I don’t like big
600 page documents. I’m much more concerned with
the upfront thought process than I am with documenting

things to death. I like whatever documentation that gets
produced to be a natural by-product of doing the
design.

[Matt] Requirements, in whatever form they’re in – use
cases, user stories, bullet points, executable acceptance
tests – really do need to be kept up-to-date, because
without that check-list it becomes very difficult to test
whether a requirement has been implemented –
especially if no one remembers what the requirement
was supposed to cover. I think XPers would agree on
this one. The story cards might end up slipping a bit,
but the acceptance tests would always need to be kept
up-to-date. Of course this raises the question of whether
a bunch of executable scripts are an acceptable method
of documenting your requirements – but I think we’ve
already answered that one for one of the other
questions…

It also pays to keep the design up-to-date – at least at a
high level (i.e. the architecture). I’ve never understood
why some programmers have such a problem with
updating their design documentation. I think the
problem is simply that they don’t enjoy it; it’s a chore.
But it really doesn’t take very long, especially if you’ve
taken a little extra time getting the design right in the
first place – in which case, the design should be quite
stable anyway. An effective way of stabilising a pre-
code design is (paradoxically, perhaps) to write some
code first: nothing pretty, just some throwaway code so
that you get a feel for what you’re doing. Just a small
amount of prototyping in this way (perhaps just
spending a day or two on this) can have a profound
effect on the design. It’s the effect that XP is supposed
to provide (i.e. increased understanding of the design
through coding), but you really don’t need to “push the
dial up to 10” in order to get it. (By that I mean you
don’t need to be prototyping all the time).

One very useful benefit of keeping the design up-to-date
is that, just like with writing it down in the first place,
the act of updating it is like a design review. Just
refactoring a class diagram is bound to reveal some
flaws or possible improvements to the design, because
all the “noise” that you get with source code is hidden
away. Modeling is pure design; programming is… well,
it’s design plus noise. Another useful benefit of writing
the design down is that it’s there for everyone else in
the team. No need to spend an hour, or a few days,
reciting the design to the new guy. Instead, just say
“here’s the design… any questions, I’ll be at my desk 6
feet away…” The alternative is very like “Fahrenheit
451”. How long would it take to recite an entire book,
anyway? And then to do it all over again the next day
for someone else in the team, and then for Q.A, and
again for the customer’s due diligence rep, and so on.

 Page 30 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

More general
[Mark] Scalability has been raised as a concern about
XP what are your thoughts on this?

[Doug] There are lots of issues with scalability in XP.
No written requirements specs, all the programmers in
a big room, no models except code, etc. etc. The only
argument I’ve ever heard for scalability of XP is “hey,
look at C3 – it worked on a big project there”. Except
that it didn’t work. I once asked on OTUG if anybody
had or knew of any large project XP success stories.
Nobody responded. I asked several times. I still
haven’t heard of one. Have you?

Summary
[Mark] So could you summarise your views on XP for
me.

[Doug] For me, the extremos lost credibility a couple
of years back when they tried to take a dismal failure
(C3) and pass it off as a resounding success.
Remember “everyone else is selling something”? I
think the community at large got sold something, but
not by “everybody else”. Back then we were being
asked to “suspend our disbelief” that this admittedly
bizarre approach wouldn’t work. As we’ve been
working on this book, we’ve found some stuff that just
leaves us shaking our heads. How does C3 get
cancelled in Jan 2000 and a reputable publication like
The Economist cite it as a complete success almost a
full year after its cancellation? How does that happen?
At any rate, I have a great deal of difficulty giving
credibility to further claims of success by these folks.

I can also remember when the “onsite customer” was
supposed to be the cornerstone of the “good
communication” supposedly at the core of XP. But the
definition of “onsite customer” keeps changing. Last I
saw (recent quote from Kent Beck) it is now supposed to
be “a team as big or bigger than the programming
team”. So I guess if you hire a team of extremos to
write your code, you have to devote a bunch of your
own people as large as the programming team to work
with the coders. So as near as I can follow it at the
moment it’s supposed to be two programmers at every
keyboard and two customers for each pair of
programmers? And this is supposed to be more
efficient than writing specifications?

[Matt] An unfortunate consequence of criticising XP is
that people tend to see you as anti-agility. That couldn’t
be further from the truth for us. I think the point about
XP is that their goals are noble enough: give the
customer what they want; give them the chance to
change their mind, even late in the project; give them
results early so that they can give you feedback early;
and so on. But the way that XP goes about achieving
these goals makes my hair stand on end. The manner in

which XP is evolving and being redefined, or “fixed”
(for example the changing definition of on-site customer
that Doug just mentioned; and the amount of up-front
design that they recommend doing) suggests that
something in its basic design is just fundamentally
wrong.

[doug] Yeah, XP is redefined at the convenience of
whatever discussion the extremos happens to be in at
the time.… basically they're just making it up as they go
along.

[Mark] Doug and Matt, thankyou for your time.

[Doug and Matt] You’re welcome.

Biographies/References
For further information see the following title:

See also:

• http://c2.com/cgi/wiki?ChryslerComprehensiveCo
mpensation

• http://c2.com/cgi/wiki?CthreeProjectTerminated
• "The Best team in the World":

http://www.computer.org/SEweb/Dynabook/Daiml
erChryslerSdb.htm

• Distributed Computing, October 1998. Reprinted
on xprogramming.com:
http://www.xprogramming.com/publications/dc981
0cs.pdf

MATT STEPHENS - Matt Stephens has been a
software developer for over ten years (or twenty+ years
if you count his first experience with programming at
the age of 11). Much of his commercial work has
involved Systems Integration, enterprise architecture,
and team leading. Matt is the editor of (and regular
contributor to) http://www.softwarereality.com, a satirical
website for software developers and managers.

DOUG ROSENBERG - Doug Rosenberg of ICONIX
Software Engineering, Inc. has been providing system
development tools and training for nearly two decades,
with particular emphasis on object-oriented methods.
He developed a Unified Booch/Rumbaugh/ Jacobson
design method in 1993 that preceded Rational’s UML
by several years.

He has produced more than a dozen multimedia
tutorials on object technology, including

 Page 31 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

COMPREHENSIVE COM and COMPLETE CORBA,
and is the author of Use Case Driven Object Modeling
with UML and Applying Use Case Driven Object
Modeling with UML.

JumpStart Training from ICONIX

At ICONIX, our mission is to provide you with the best training and consulting you can find.

If you are looking for focused, intensive lecture/lab workshops that get your project moving
immediately, ICONIX training may be the answer. ICONIX specializes in UML JumpStart Training
for object-oriented projects, using YOUR project and the ICONIX Process: a streamlined approach
that uses a minimal but sufficient set of diagrams and techniques to get you from use cases to code
quickly and efficiently. When schedule is critical, our JumpStart Training format can significantly
accelerate progress on your project while your team is getting trained.

Unlike any other training provider, ICONIX uses YOUR project so all lab time is spent getting real
work done on the team project.

Not only is all of the lab time spent on your project under the guidance of an experienced ICONIX
instructor, but your project is reviewed (under non-disclosure) prior to the training class. This gives
us time to get up to speed on the specifics so that when we walk through the door, we are briefed and
ready to work. When you can't afford to waste your team's valuable time on classroom examples and
have to get your project off to a fast start, ICONIX training is what you need.

ICONIX Software Engineering, Inc. 2800 28th Street, Suite 320 Santa Monica,
CA 90405

Tel (310)458-0092/Fax (310)396-3454

email: umltraining@iconixsw.com
web: http://www.iconixsw.com/JumpStart.html

 Page 32 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Visual Basic Comes of Age – VB.NET

Visual Basic used to be derided for not being a “real” programming
language. Not any more says PAUL HATCHER - as he explains how VB has
joined the big boys.

Introduction

It has been just over a year since Microsoft released its
new .NET toolset and we are looking forward to its first
patch in April (“Everett”). This article is going to
describe the background to Microsoft’s .NET
architecture, introduce you to VB.NET, and give you
some pointers on how to adapt if you are coming from a
Visual Basic background to what is going to be a major
change to your working environment over the next few
years.

The Windows platform’s lower levels are old, and have
been developed using a variety of styles of
programming that have evolved over the years. The
early design was performed during the 1980s, before
object-oriented programming became mainstream, and
it shows in the API: a flat namespace with thousands of
methods; use of such conventions as Hungarian
notation; languages did not support abstract data types;
and support for a variety of naming schemes.

During the early 1990s, object-oriented programming
became more popular and C++ libraries such as MFC
were layered over the top of the API; then Visual Basic
came along to allow us to get on with writing business
applications rather than plumbing. But still,
fundamentally underlying the whole structure is that old
API.

Support for component-based programming arrived in
the mid-1990s, and significant additions to the flat API
were provided in the form of OLE and COM. However
the underlying flat C APIs were never originally
intended to support dynamic object creation or to
support the typical object lifecycle – and this left us

with the joys of COM reference counting! Although
Visual Basic relieved some of the tedium of
programming with COM, you still had to be aware of
the issues to produce stable, scalable applications.

What is .NET?
.NET is Microsoft’s next generation software that
provides an environment similar to a Java VM in which
code is executed – called the Common Language
Runtime (CLR). The CLR was designed with a number
of goals in mind, in particular:
• Portability – it will run on PCs and on small

devices such as PDAs.
• Provision of low-level support for modern object-

oriented, component-based programming - general
enough to support a variety of languages

• Provision of a rich, fine-grained security model
where you can limit execution of code based on
who wrote it, where the code came from and what
code is trying to call it.

Above the CLR sits the .NET Framework, a class
library comprising over 6,500 classes and interfaces just
waiting to be used. It covers everything from dictionary
classes such as hashtables and collections through to
XML serialization of business objects and Web
Services, of which more later.

The .NET Framework is subdivided by means of
namespaces – which enable the libraries to be divided
into areas of responsibility. The name of a class need
only unique within a given namespaces, freeing the
developer to use their own names without fear of
clashing with base types. The following table
summarises some of the main .NET namespaces

System Fundamental classes, base class implementations, common value and reference data types,
interfaces, events and exceptions

System.IO Synchronous and asynchronous IO on files and data streams
System.Drawing Provides access to the GDI+ library, including such items as basic drawing primitives, meta-

file and printing support.
System.Windows.Forms Base classes for creating Windows-based applications using rich (and heavy) user interface

on a Windows client.
System.Web Enables browser-server applications to be developed, System.Web.UI defines controls that

can be used in ASP.NET applications to develop rich user-interfaces.
System.EnterpriseServices The way into the COM+ service architecture for .NET components
System.Globalization Defines culture and language information, including collation orders, calendar types, e.g.

Julian, Hebrew and Japanese are all catered for.
System.Data Defines ADO.NET, the replacement for ADO, see section below for details

 Page 33 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

VB.NET

Language inter-operability
VB.NET is the direct replacement for Visual Basic 6.0
though, as we will see shortly, due to the degree of
change it is a cousin rather than a child of that language.
It provides many new and improved features such as
inheritance, overloading and compliance with the
common language specification (CLS) – which
standardizes such things as data types and how objects
are exposed and inter-operate; classes, components and
services defined in VB.NET may be used by any CLS-
compliant language and vice-versa.

OO Credentials
VB.NET, like most other .NET languages, is an object-
oriented language supporting single inheritance,
multiple interfaces and structured exception handling,
and supports fine grained control of inheritance
characteristics such as visibility of attributes and
properties. In the following code example we define
some interfaces and then implement some classes based
upon them:

‘Define some interfaces
Public Interface IAnimal
 Property Name() As String
End Interface

Public Interface ILandAnimal
 Inherits IAnimal
 Sub Walk()
End Interface

Public Interface IAquaticAnimal
 Inherits IAnimal
 Sub Swim()
End Interface

Public Interface IAquaticLandAnimal
 Inherits ILandAnimal, IAquaticAnimal
End Interface

‘ Define some classes that implement them
Public Class AnimalBase Implements IAnimal
 Private p_name As String

 ‘ Call to constructor
 Public Sub New(ByVal name As String)
 Me.Name = name
 End Sub

 ‘ Properties require Get and Set
 ‘ implementations
 Public Property Name()
 As String Implements IAnimal.Name
 Get
 Name = p_name
 End Get
 Set(ByVal Value As String)
 p_name = Value
 End Set
 End Property
End Class
Public Class Elephant : Inherits AnimalBase
 Implements ILandAnimal

 Sub New(ByVal name As String)
 ‘ Must call base class constructor
 MyBase.New(name)

 End Sub
 Sub Walk() Implements ILandAnimal.Walk
 ' Walk implementation goes here
 End Sub
End Class

Public Class Fish : Inherits AnimalBase
 Implements IAquaticAnimal

 Sub New(ByVal name As String)
 ‘ Must call base class constructor
 MyBase.New(name)
 End Sub

 Sub Swim() Implements IAquaticAnimal.Swim
 ' Swim implementation goes here
 End Sub
End Class

Public Class Otter : Inherits AnimalBase
 Implements IAquaticLandAnimal

 Sub New(ByVal name As String)
 ‘ Must callbase class constructor
 MyBase.New(name)
 End Sub

‘ #Region is instruction to Visual Studio .NET
‘ Enables this region to be collapsed
#Region “ Public methods”
 Sub Walk()
 Implements IAquaticLandAnimal.Walk
 ' TODO Walk implementation goes here
 End Sub

 Sub Swim()
 Implements IAquaticLandAnimal.Swim
 ' TODO Swim implementation goes here
 End Sub
#End Region
End Class

The first thing to note is that multiple interface
inheritance is supported. This can be very useful where
you need to design a class which can be used
polymorphically in two interface contexts – but note
that you cannot inherit the behavior.

The second thing to note is that this code shows a
language pattern (or idiom) that is very common in the
.NET Framework. This can be summarised as follows:

• Firstly an interface called IAnimal, and sub-
interfaces (e.g. ILandAnimal) are defined

• Then a base implementation of the base interface
(IAnimal) is provided – see IAnimalBase

• Then we define the animal classes we’re really
interested in – Elephant, Otter, Fish, etc. These use
implementation inheritance to get the default
IAnimal implementation provided by the
AnimalBase class. Other methods (Swim, etc.)
must be implemented explicitly in these classes.

Note that with the code shown, it is valid to create
classes of type AnimalBase, which is probably not what
we want. To rectify this problem we can put the
MustInherits keyword before the class name.

We may also define virtual methods inside a class
descendant class must implement by using the
MustOverride keyword, or provide a default

 Page 34 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

implementation that is changeable by child classes
using the Overridable keyword.

One welcome addition to VB.NET is the use of explicit
constructors (see the New methods in the code above).
Use of constructors forces client code to initialise a
class correctly – thus removing a likely source of bugs.

Those of you who know VB6.0 might be asking, “So
where’s the equivalent of Class_Terminate – the
destructor function”, and the short answer is that it does
not exist. The CLR, like the Java VM, uses a garbage
collection scheme to detect when an object goes out of
scope and so you have very little control over when a
class is finally destroyed. If it is using essential
resources such as database connections or file handles,
then you have to implement the IDisposable interface
and create your own disposer to release the resources.

You will also notice the new style of property
declaration that includes the Get/Set code inside a
Property wrapper. To produce a read-only or write-only
property you simply use the keywords ReadOnly or
WriteOnly before the property definition and exclude
the Get/Set as appropriate. This means that the Get/Set
will always have the same level of visibility - so you
can no longer have a public-scope property reader and a
friend-scope property setter. This may mean that your
coding style will need some changes if you’re familiar
with VB6.0.

A major change from VB6.0 is that Property Let is gone
for ever and you no longer use the keyword Set to
assign to objects to variables - everything is an object in
.NET anyway.

One style guideline that I would like to introduce you to
is shown on the classes that inherit from AnimalBase
thus:

Public Class Elephant : Inherits AnimalBase

Classes may implement many interfaces but inherit one
implementation – so unless you take care it can be
difficult to “see” the base implementation. Following
the convention of putting the base class implementation
inheritance on the same line as the class declaration
helps avoid this.

One useful feature of Visual Studio .NET is how the
“TODO” lines (in the code) are handled: they appear in
a task list at the bottom of the screen, and can be
filtered out if required. So you can leave notes to
yourself and your colleagues indicating areas requiring
further attention; the tool will automatically bring them
to your attention.

Error Handling
With the introduction of structured exception handling,
we say farewell to Vb6.0’s On Error Goto:. We get
instead a variation on the Try..Catch..Finally syntax that
is supported by C++ and others, that allows us to
explicitly control the behaviour of the application under
failure conditions. The following code shows the
framework for a structured exception handler

Try
 ' Starts a structured exception handler.
 ' Place executable statements that may
 ' generate an exception in this block.

Catch [optional filters]
 ' This code runs if the statements listed
 ' in the Try block fail and the filter on
 ' the Catch statement is true.

[Additional Catch blocks]

Finally
 ' This code always runs immediately before
 ' the Try statement exits.
End Try

The Try block contains the code that you want to be
monitored during execution. If an exception is raised by
any of this code, execution passes to the Catch block,
which operates in a similar fashion to a Case statement -
the filter can specify the type of exception that you are
handling. This means that you should always write the
Catch blocks in the order of most specific exception, to
most general, and always have a Catch block at the end
with no filter to cater for exceptions you are not
expecting: “No-one expects the Spanish Exception”
(Sorry Ed). The Finally block should contain tidy up
code that you always want to run, even if an exception
has been thrown, for example to release resources. Here
is a concrete example from the VB documentation
showing some file IO with structured exception
handling

Function GetStringsFromFile(
 ByVal FileName As String
) As Collection

 Dim Strings As New Collection
 Dim Stream As System.IO.StreamReader =
 System.IO.File.OpenText(FileName)
 'Open the file.

 Try
 While True
 ' Loop terminates with
 ' EndOfStreamException error when end
 ' of stream is reached.

 Strings.Add(Stream.ReadLine())
 End While

 Catch eos As System.IO.EndOfStreamException
 ' No action is necessary ;
 ‘ end of stream has been reached.

 Catch IOExcep As System.IO.IOException
 ' Some kind of error occurred. Report
 ' error and clear collection.
 MsgBox(IOExcep.Message)
 Strings = Nothing

 Finally
 Stream.Close() 'Close the file.

 Page 35 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

 End Try
 Return Strings
End Function

If you want to catch an exception to do some error
processing, but still forward the error, you should re-
throw the original exception (this ensure you don’t lose
the stack trace information to that point):

Try

Catch ex As Exception
 ‘ Throws original exception, continues
 ‘ stack trace from original throw point.

 Throw

End Try

In this example, whoever receives the exception
rethrown in the above example can get access to the full
stack trace – right down to the source of the exception.

In the following example, the trace would start in the
block shown – earlier stack information (who originally
threw the exception) would be lost:

Try

Catch ex As Exception
 ‘ Throws *new* exception,
 ‘ stacks trace starts from here

 Throw ex

End Try

Data Access – ADO.NET
Data access and structures have changed fundamentally
under the .NET Framework. Rather than ADO we have
ADO.NET. ADO and ADO.NET really only have the
letters A, D and O in common.

ADO is a layer on top of the OLEDB COM library to
flexible access to a wide range of different data stores
including non-relational stores such as Exchange and
Active Directory.

Unfortunately, due to its COM heritage, ADO does not
handle XML and disconnected recordsets particularly
well. The ADO provider cannot read any arbitrary
XML that is well-formed, but is instead restricted to the
“urn:schemas-microsoft-com:rowset” XML schema.
Furthermore, the data remains intimately tied to the data
source that originated it: taking data from an Access
database and pushing it into a DB2 database was
possible - but only just and only with a lot of additional
programming. Microsoft therefore had a number of
goals when designing ADO.NET:

• Retain the feel of the ADO programming
model, after all a lot of people used it
successfully.

• Simplify the programming model compared to
ADO

• Tight integration with XML
• Loosen the link to relational databases and

make it simpler to deal with heterogeneous
data sources.

Disconnected Data
ADO.NET is designed around disconnected data access,
and this means no more server-side cursors. The two
key classes that provide the data are the DataReader and
the DataSet.

DataReader is very similar to the fire hose cursor in
SQL Server, in that it provides a read-only, forward-
only stream of data that you have to handle yourself to
put it into a structure. This involves knowing the type of
each underlying column so that you can perform the
correct casts etc. DataSet on the other hand is much
closer ADO’s disconnected Recordset with a number of
key twists.

First of all, a DataSet has no knowledge whatsoever of
what data source produced it, i.e. it is ‘pure’ data that
need bear no relationship to any database structure that
you have. Secondly, a DataSet can hold multiple
resultsets (DataTables) that can be related internally
using its DataRelation objects. Taking these two
together it means that it is perfectly possible to have a
DataSet where one DataTable was provided by SQL
Server, another is based on an Excel workbook and the
third is a combination of data from a DB2 database and
the Exchange mail server.

The DataSet object can load from or save both data and
schema information to XML, and may interact closely
with XmlDataDocument, which provides a DOM
compliant view of the DataSet. Changes to either object
are automatically reflected in the other.

Visual Studio .NET provides some very useful
capabilities for dealing with all of this.

• Start by adding an XML document to your project
and coding some data within it.

• Now right click anywhere inside the XML file and
select “Create Schema”. VS.NET will then build an
associated schema file.

• Open up the schema and fix-up the types of the
elements as everything is likely to have been
defined as xs:string.

• Lastly switch to the XML source view and add an
ID attribute to the xs:schema node.

A command line tool shipped with VS.NET, XSD, uses
this to name the class it creates

 <xs:schema id=”mydata”…>

You now have a typed XML and an associated data file,
which will allow you to create a typed data set using the

 Page 36 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

.NET Framework. Open a VS.NET command prompt
and type

 xsd /d /l:vb MyData.xsd

This will create the MyData.vb class, to see the
equivalent C# class use /l:cs instead. You now have a
typed DataSet that may be bound onto a Windows form,
a Web form or supplied over a Web Service.

Database Connectivity
So the question remains how we get the data from the
data store, be it relational or non-relational, to the
DataReader or DataSet - the answer is DataAdapter
classes.

These comes in a variety of flavours that target specific
database platforms: so OleDbDataAdapter will talk to
any OLEDB data source; SqlClientDataAdapter is
targeted specifically at SQL Server 2000, etc.

Forms and Controls
The forms engine in Visual Studio has also undergone a
major revision. Although under VB6 we were told that
forms were essentially ‘visual’ classes, the practicalities
of using them in this way made for some very
‘interesting’ problems!

In VS.NET, forms and controls share all of the features
of other classes with the addition of a visual surface that
is controlled by a set of components called designers.

The format of forms has also changed for the better
with FRX forms banished to that great bit-bucket in the
sky. Instead we have a region controlled by the
Windows Form Designer that describes the controls and
their properties and a .RESX file which contains XML
for any additional binary resources.

Events/Delegates
Event handling has also undergone a major revision
with the introduction of delegates. A delegate is the
type-safe object-oriented version of a function pointer,
and wiring an event to a delegate can be achieved in
two ways:

• Using the designer which creates the control
WithEvents and uses the “Handles… ” syntax

• Manually using the AddHandler/RemoveHandler
methods

Of the two, the Handler methods are the most flexible
and the fastest, since you can add and remove handlers
at runtime, even on objects that have been created at
runtime. The speed issue arises the WithEvent syntax
causes an additional de-reference of the underlying
object to occur at runtime.

A later article will explore this more fully as the area is
extremely rich and allows you to simply write callback
routines as well as handle events.

Migrating from VB 6
Microsoft has announced their plans for the future of
VB6.0. The good news is that it will be supported
commercially until at least 2008. The bad news is that
once you have started writing VB.NET you will not
want to go back to the restrictions that VB6.0 imposes
upon you.

So the question remains; what to do with all the
investment you have made in VB6.0 code? In most
organisations, starting from scratch will not be a
commercially viable option, and there will always be
pressures to deliver new functionality to the business
rather than spend time on re-inventing features they
already have that are cleaner.

The strategy that I would adopt is as follows
• Extend
• Wrapper
• Rewrite

Extend
You want to get started with .NET but you have a large
amount of existing VB6.0 code that you cannot afford
to redevelop. What you can do is use the ability of
.NET to interoperate with COM. You write your new
business logic in .NET, but call it from your original
VB application.

Wrapper
Then comes the stage when you need a more substantial
change, e.g. you had a VB6.0 Windows application
containing complex business logic that you want to
deploy as a web application.

In this case you use the COM/.NET interoperate ability
the other way around, where your business logic is
contained in a COM DLL, but is invoked from a
ASP.NET application.

This of course implies that you have nicely factored out
your business logic from your presentation tier and
forms, but we all do that every time don’t we ☺

Rewrite
However, there will come a time when you have to
consider re-writing your application due to the level of
change required, or architecture of your original
solution.

First of all if you attempt to port your code rather than
rewrite it, do not expect the Project Migration Wizard to
solve your problems. The code it produces does take

 Page 37 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

care of vast majority of syntax issues, but significant
areas remain, e.g. data access, security etc. Secondly, if
you attempt a port, you will miss a large proportion of
the benefits associated with VB.NET, such as use of
inheritance. For example by basing all forms in an
application against a base class you can introduce
application-wide changes very simply. On a recent
project we adopted this approach and the code volume
in the forms alone dropped by over 70%.

Finally, when you do re-write take the time to define
the architecture

Conclusion
So finally, the three things I want you to remember are
• The Framework is the important thing, whether you

use VB.NET or C# for your day-to-day work will
be either a work or personal preference. Howeverit
is worth being able to read and write both.

• With VB.Net you can write well-structured,
scalable, interoperable, explicitly multi-threaded

applications; if your C++ colleague is being paid
more than you, now is the time to ask for that raise.

• Have fun! Microsoft has produced a well-featured,
and for Microsoft, stable, version 1.0 environment
in which you can develop a lot of cool software in a
much shorter time than previously.

Author Bio
PAUL HATCHER holds MSCD and MCAD
certifications and consults with Ratio Group. Paul is a
specialist in writing custom software application
development for medium to large size companies based
on the Microsoft .NET platform. Paul can be reached
via email at paulh@ratio.co.uk.

See back page (40) for details of VB.NET training.

rOOts 2003 - May 5th – 7th, Bergen Conference Center, Norway.
www.roots.dnd.no

rOOts (recent Object Oriented trends symposium) is a forum for presentation, debate and study of
the latest object oriented theories and practices. The conference is held in Norway, the country in
which OO technology finds its roots. Sponsored by the Norwegian Computer Society (DND), this
four-year-old annual event has quickly become a favorite among its target audience: European IT
professionals and their managers.

Now firmly rooted in the Scandinavian and European IT community, rOOts 2003 hosts a panel of
speakers including (but not limited to) Dave Thomas, Martin Fowler, Angelika Langer, John Sowa
and Kevlin Henney. See the rOOts program for details. All the speakers have promised to bring their
most recent work, which promises at least a few surprises for our delegates.

The conference concludes with a wide range of experience reports reflecting on current and ongoing
work by industry professionals and scientists. ‘Birds-Of-a-Feather’ (BOF) sessions will give
delegates unique opportunities to interact with the experts’ through informal discussions and code-
ins. For details and registration visit the rOOts website. www.roots.dnd.no

www.roots.dnd.no

 Page 38 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

Book Review (by Richard Vaughan)

Agile Software Development

Rating: 4 out of 5.
Author: Alistair Cockburn
ISBN: 0201699699
Recommended Target Audience: All developers,
technical managers, project managers

Anyone who has experienced the pain of real software
development and failed projects is (or should be)
interested in what it is that goes wrong and how we can
do it better. The subject of development methodologies
is therefore of great importance and, in the spirit of
objectivity, I should at the outset declare my allegiance
to this book’s subject matter - I have both feet so deeply
in the Agile camp that they took root years ago, long
before the formal concept came about. For me, it seems
obvious that the source of the trouble is not even under
our noses but is, in fact, just behind and a little above
the nasal apparatus.

For example, Gödel’s Incompleteness Theorem implies
that the role of human creativity is an integral part of
symbolic reasoning. If you accept this then it follows
that any formalisation of software-development
practices must include a strong element of human
psychology. As Gerald Weinberg (whom Cockburn
himself quotes) once said: ‘That it is people who design
software is terribly obvious… and ignored.’

So, to the book itself: Weighing in at a trim 278 pages,
it is organised into six chapters along with an
introduction, three appendices, an extensive set of
bibliographic references and an index. Cockburn’s style
is fluid and readable, and the main text is frequently
interspersed with small anecdotes, which he uses to
illustrate the points he is making. Importantly, each
chapter ends with a ‘What should I do Tomorrow?’
section that translates the theoretical discussion into
concrete steps that one can execute on a real project.

Cockburn’s core thesis is that one should maximise face
to face communication within teams, and he makes the
following point at the beginning of the second chapter:
‘If we are going to build systems out of people, we
should understand people’s operating characteristics.’
This sheer realism is what is so agreeable about the

book (and the Agile standpoint as a whole). To
paraphrase Cockburn, you cannot expect to enjoy an
homogenous distribution of aptitude, experience,
approach and downright personal-quirkiness in any
development team. We cannot therefore view all
developers as being largely plug compatible. He
complements this by asserting that no single
methodology will fit all projects and that one has to
tailor the approach taken to account for variations in
people, tools, geographical issues and, of course, the
nature of the development challenge at hand. Moreover,
he is stressing that one should, if necessary, be prepared
to adjust the methodology mid stream.

The introduction therefore examines the nature of and
problems with human communication. Subsequent
chapters cover the communication games that people
can play, an examination of the characteristics of the
individual and communication within teams. The book
then examines the methodologies that abound before
progressing to examine the spectrum of Agile
methodologies. This includes a good overview and
critique of eXtreme Programming, which relates the
principles contained therein to the general points and
approach espoused by the rest of the book. Cockburn
finally covers his own methodology (or methodology
set, more accurately), namely the Crystal
methodologies.

The book has a good selection of anecdotes, some
amusing, that Cockburn uses to illustrate a given point.
For example, with regard to the way that people apply a
given methodology and then contravene it by taking
short cuts, he tells of a time that a project leader showed
him a collection of diagrams that they used in a project.
Cockburn ascertained that they used an iterative and
incremental approach and that the requirements and the
design changed in the second iteration. The following
exchange then took place:

Cockburn: ‘How did you manage to update all these
diagrams in the second iteration?’
Leader: ‘Oh, we didn’t. We just changed the code...’

The book also contains some excellent insights. For
example, Cockburn quotes Jim Highsmith (an IBM
Fellow) to point out that Process does not mean
Discipline - These are distinct issues and of the two,
discipline is the more powerful. This is because ‘a
person who chooses to act with care and consistency
will do better than someone who is just following
instructions’. The common mistake that people make is
that ‘they believe that adherence to a process will
somehow engender discipline’. This simply does not
follow.

 Page 39 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

One potential problem does lurk amongst all of this,
which is that the very people whose stance this book
attempts to change are likely to miss the point and
simply repeat the mistakes of the past but in an ‘Agile’
manner. That is to say that they could leap at the idea of
Agile methodologies using Cockburn’s and/or others’
contributions as the springboard, only then to miss the
point by slavishly adhering to the principles and thereby
return to square one. Good management is more about
the intelligent application of a little psychology than it
is about a mass of rules. Thankfully Cockburn reminds
us that ‘Agile is an attitude not a formula’, although for
my money, he could have given this point more
prominence than it gets.

If I were to identify a real downside, however, I would
have liked to have seen the many salient points of the
Agile philosophy crystallised out into a rigorous,
axiomatically based argument. A lot of the time I felt
awash in a soup of very effective but loosely connected
assertions and discussions - Being agile (in the
traditional sense) and flexible does not preclude the
development of clear logic.

Subject matter aside, the only other real criticism that I
could level is that the index could be a little more
generous. For example, towards the end, Cockburn cites
a project that had a distributed team-structure and then
shows how it failed the ‘second test’ (of methodologies,
not software). The index, however, does not mention
the ‘tests’ that he is alluding to; indeed testing (in terms
of software viability) does not appear in the index at all,
even though it is an integral part of every project and is
referred to in a number of places in the main text.

Overall, I felt the book to be an interesting and
important addition to the literature base. If you already
place the individual at the centre of the development
process it will tell you a lot of things that you already
know. However, this is not a criticism as, for me, it laid
previously unread ideas down on paper. Its central idea
is one that many should sit up and take notice of and it
fills that philosophy out with excellent discussion of the
finer points - A welcome addition to the armoury and
worth reading.

We would like to invite all ObjectiveView readers to join the ObjectiveView discussion group at Yahoo!
Groups.

This discussion forum was created as a tool to encourage communication between ObjectiveView
readers and authors, as well as between readers themselves.

Feel free to ask questions about articles, as well as about object & component technical issues of
general interests.

TWO EASY WAYS:

1. Send an email to objectiveview-subscribe@yahoogroups.com

2. Go to http://groups.yahoo.com/group/objectiveview and click on the ‘Join this Group!’
button.

To Subscribe for Free Delivery by Email of PDF Versions of ObjectiveView

Email: objectiveview@ratio.co.uk with Subject: Subscribe

 Page 40 ObjectiveView Magazine Back copies at ratio.co.uk

Published by – Ratio Group – Training Consultancy & Development – C++,Java,EJB,.NET,C#,VB,CBD,UML,ICONIX,RUP

 Call +44 (208) 579 7900 ObjectiveView Magazine ratio.co.uk

 DOTNET TRAINING AND DEVELOPMENT FROM THE
EXPERTS

.NET – A One Day Overview – Public or In-house
• Introduction • if .NET is the answer, what is the question?
• .NET: The Vision and the Platform • The .NET object model and type system
• Language interoperability • Frameworks and applications
• Strategies for adopting .NET • Summary and perspective

Managed C++ Under .NET – A One Day Overview
• .NET overview for C++ developers • Managed and unmanaged code overview
• Storage Management • Inheritance
• Operator overloading • Delegates and events
• Properties • The .NET reflection mechanism
• Porting to .NET • Summary and conclusions

C#.NET in 5 Days – Extensive Hands-on – Public or In-house
• What is .NET? • The .NET Framework
• Interoperability • Streams and Files
• Internet Access • Attributes and Reflection
• Development Technologies • Collection Classes
• Web Services • Deployment

VB.NET & ASP.NET in 5 Days – Extensive Hands-on – Public
or In-house

• Introduction to .NET • Visual Studio.NET
• Windows Forms • DataTables and DataGrids
• Menus and Dialogs • Overview of the Debugger
• Introduction to OOP • Classes and Methods
• Overloading Methods • Understanding Inheritance
• Using the List Box Control • ADO.NET
• Using XML from VB.NET • Interacting with COM components
• ASP.NET & WebForms • Using WebForms
• Using DataGrids • Using DataList Control
• Web Services • Asynchronous Web Services

For More Information Contact Ratio on 020 8579 7900
Email info@ratio.co.uk or see www.ratio.co.uk

Talk to us about SME DOTNET development services.

