
Page 1 of 42

 ObjectiveView

A Magazine for the Professional Software Developer

y

Agile
Development

Special

Unit Testing

Turning Comments Into
Code

Combining UML and

TDD

Agile Retrospectives

Agile Modeling

web distribution partner

www.iconixsw.com

Tel: +1 310 4580092
Fax: +1 310 3963454

Email: marketing@iconixsw.com

web distribution partner

www.softwarereality.com

Strata – Debra Stroud

published by

Software Development, Training and

Consultancy
www.ratio.co.uk/objectiveview.html for

back copies

web distribution partner

www.thoughtworks.com

web distribution partner

www.cpttm.org.mo

web distribution partner

www.ambysoft.com

To subscribe for email delivery simply email:
objective.view@ratio.co.uk with subject: subscribe

Page 2 of 42

ObjectiveView

advertisment

CONTACTS

Editor

Mark Collins-Cope
mcc@ratio.co.uk

Free subscription

PDF by email – email to:
objective.view@ratio.co.uk
(with subject: subscribe)

Feedback/Comments/Article
Submission

info@ratio.co.uk

Circulation/Sponsorship Enquiries
info@ratio.co.uk

Authors may be contacted through the editor. All
questions or messages will be passed on.

CONTENTS

Effective Unit Testing
By Elfriede Dustin

 3

Restrospective agility
By Tim Mackinnon

 10

Comments into code
By Kent Tong

19

Agile Modeling
By Scott Ambler

27

UML and TDD

34

 By Doug Rosenberg
 and Matt Stephens

Book Recommendations

41

Our latest book recommendations

Agile Development with Iconix Process

A pragmatic collection of agile UML techniques,
illustrated by example.

Available now from Amazon.com.

• Defines a core subset of agile practices and

separates agile fact from fiction

• Describes how to get from use cases to source code
using a minimal object modeling process

• Defines extensions to the core ICONIX Process,
including: persona analysis/interaction design; and
how to combine object modeling with Test Driven
Development (TDD)

Page 3 of 42

Effective Unit Testing

In an excerpt from her recent book – Effective Software Testing –
Elfriede Dustin discusses the importance of unit testing…….

Unit testing is the process of
exercising an individual portion
of code, or a component, to
determine if it functions properly.
Almost all developers perform
unit testing on some level prior to

regarding a component or piece of code as complete.
The process of unit and integration testing is
instrumental to the delivery of a quality software
product, and is often neglected, or implemented in a
cursory manner. If unit testing is done properly, later
testing phases will be more successful. There is a
difference, however, between casual, ad-hoc unit testing
based on knowledge of the problem, and structured,
repeatable unit testing based on the requirements of the
system.

To accomplish the goal of structured and repeatable unit
testing, executable unit test software programs are
developed, either prior to or in parallel with
development of the software itself, that exercise the
code in ways necessary to verify that it meets the
functionality specified by the requirements, and to
verify that it works as designed. These unit test
programs are considered part of the development
project and are updated along with the requirements and
source code as the project evolves.

Executing unit tests ensures that the software meets at
least a baseline level of functionality prior to integration
and system testing. Discovering defects while the
component is still in the development stage offers a
significant savings in time and costs, since the defect
will not have to be placed into the defect tracking
system, recreated, and researched, but rather fixed in
place by one developer prior to release.

The unit testing approach discussed here is based on a
lightweight, pragmatic method of unit and integration
testing that is applicable for most software projects.
There are other, more complicated approaches to unit
testing, such as path coverage analysis, which may be
necessary for very high-risk systems. However, most
projects do not have the time and resource budgets
necessary to devote to unit testing at that level.

An important point to note about this section is that
“pure” unit testing is not discussed. Pure unit testing is
the practice of isolating a component from all external
components that it may call to do its work, therefore
allowing the unit to be tested completely on its own.
This approach requires that all underlying components
be “stubbed” to provide an isolated environment, which

can be very time consuming and carries a high
maintenance penalty. Since the approach discussed in
this section does not result in the underlying
components being isolated from the component under
test, unit testing a component will actually result in
some integration testing as well, since it will be calling
lower level components to do its work. This approach
to unit testing is acceptable, however, if those
underlying components have also been unit tested and
proven to be correct. Unit testing an upper level
component without isolation is effective, since the
components below it have been unit tested themselves
and therefore should not contain problems. Any unit test
failures are most likely to be in the component under
test, not in the lower-level components.

Structure the development
approach to support effective
unit testing
Software engineers and programmers need to be
accountable for the quality of their own work. Many
view their job as producers of code who are not
responsible for testing the code in any formal way,
which, in their mind, is the job of the system testing
team. In reality, programmers must be responsible for
producing a high quality, initial product, which adheres
to the stated requirements. Releasing code with a high
number of defects to the testing team usually results in
long correction cycles, most of which can be drastically
reduced through the proper use of unit testing.

Although there is a slight concern that knowledge of the
code could lead to less effective unit tests, this is
generally not applicable if the component is performing
specific functions that are related to documented
requirements of the system. Although the unit test may
exercise a component that only performs a small part of
a functional requirement, it is usually straightforward to
determine if the component fulfills its portion of the
requirement properly. Aside from writing unit test
programs, the developer will also need to examine code
and components with other tools, such as memory
checking software to find memory leaks. It may also be
beneficial for multiple developers to examine the source
code and unit test results, to increase the effectiveness
of the unit testing process.

In addition to writing the initial unit test, the developer
of the component is in a good position to update the unit
test as necessary when modifications are made to the
code. These modifications could be in response to

`

Page 4 of 42

general improvements and restructuring, or in response
to a defect or requirement change. Having the
developer responsible for the code also responsible for
the unit test is an efficient way to keep unit tests up-to-
date and useful. In addition, depending on how unit
tests are implemented, they could cause the build to
halt, meaning it will not compile or produce a working
executable, if the unit test program is part of the
software build process. For example, suppose a
developer removes a function, or “method”, from a
component’s C++ interface. The unit test, which has
not been updated, still requires the presence of this
function to compile properly, and therefore fails to
compile. This prevents the build from continuing on to
other components of the system until the unit test is
updated. To remedy the problem, the developer will
need to adjust the unit test program’s code to account
for the fact that the method is no longer part of the
interface. Here again, it is important for the developer
to perform any necessary updates to the unit test
program whenever the code is changed. Some software
projects also opt to make successful unit test execution,
not just compilation, necessary for the build to be
considered successful. See later in this article for more
information on this topic.

Unit tests will need to be written in an appropriate
language that is capable of testing the code or
component in question. For example, if the developer
has written a set of pure C++ classes to solve a
particular problem or need, the unit test will most likely
also need to be written in C++ in order to exercise the
classes. Other types of code, such as COM objects,
could be tested from Visual Basic or possibly with
scripts, such as VBScript, Jscript, or Perl.

In a large system, the code is usually developed in a
modular fashion, by dividing functionality into several
layers, each of which is responsible for a certain aspect
of the system. For example, a system could make use
of the following layers in its implementation:
• Database abstraction. An abstraction for database

operations, this layer wraps up database interaction
into a set of classes or components (depending on
the language) that are called by code in other layers
to interact with the database.

• Domain objects. A set of classes that represent
entities in the system’s problem domain, such as an
“Account” or an “Order”. Domain objects
typically interact with the database layer. A
domain object will contain a small amount of code
logic, and may be represented by one or more
database tables.

• Business processing. Components, or classes, that
implement business functionality that makes use of
one or more domain objects to accomplish a
business goal, such as “Place Order” or “Create
Customer Account”.

• User interface. The user-visible components of the
application that are used to interact with the system.

This layer can be implemented in a variety of ways,
but may manifest itself as a window with several
controls, a web page, or a simple command line
interface. This layer is typically at the “top” of the
system’s layers.

The above list is a somewhat simplified example of a
layered implementation, but it demonstrates the
separation of functionality across layers from a
“bottom-up” perspective. Each layer will be made up of
several code modules, which work together to perform
the functionality of the layer. During the development
of such a system, it is usually most effective to assign
developers to work with a single layer, and
communicate with developers, and components, in other
layers through a documented and defined interface. So,
in a typical interaction, the user chooses to perform
some action in the user interface, and the user interface
layer calls the business processing (BP) layer to carry
out the action. Internally, the BP layer uses domain
objects and other logic to process the request on behalf
of the user interface (UI) layer. During the course of
this processing, the domain objects will interact with the
database abstraction layer to retrieve or update
information in the database. There are many advantages
to this approach, including the separation of labor
across layers, a defined interface for performing work,
and the increased potential for reusing layers and code.

There will typically be one or more unit test programs
in each layer, depending on the size and organization of
the layer’s implementation. In the above example, a
domain object unit test program would, when executed,
attempt to manipulate each domain object just as if the
BP layer were manipulating it. For example, the
following pseudo-code outlines a unit test for a domain
object layer in an Order Processing System that features
three types: “Customer”, “Order”, and “Item”. The unit
test attempts to create a customer, an order, and an item
and manipulate them.

// create a test customer, order, and item
try
{

Customer.Create(“Test Customer”);
Order.Create(“Test Order 1”);
Item.Create(“Test Item 1”);

// add the item to the order
Order.Add(Item);

// add the order to the customer
Customer.Add(Order);

// remove the order from the customer
Customer.Remove(Order);

// delete the customer, order, and item
Item.Delete();
Order.Delete();

Page 5 of 42

Customer.Delete();
}
catch(Error)
{
 // unit test has failed since one of
 // the operations threw an error – return it
 return Error;
}

Similarly, the BP layer will have a unit test that
exercises its functionality in the same way that the user
interface actually uses it, as in the following pseudo-
code fragment:

// place an order
try
{

OrderProcessingBP.PlaceOrder
(“New Customer”, ItemList);

}
catch(Error)
{
 // unit test has failed since the operation
 // threw an error – return the error
 return Error;
}

As discussed in the introduction to this section, a
natural result of unit testing a layered system without
isolating underlying components is that there will be
integration testing of the component under test and the
associated underlying components, since a higher layer
will need the services of a lower layer to do its work. In
the above examples, the BP component will use the
Customer, Order, and Item domain objects to
implement the PlaceOrder functionality. Thus, when
the unit test executes the PlaceOrder code, it is also
indirectly testing the Customer, Order, and Item domain
objects. This is a desirable effect of unit testing, since it
will allow unit test failures to be isolated to the
particular layer in which they occur. For example,
suppose the domain objects unit test passes, but the BP
unit test fails. This most likely indicates that there is
either an error in the BP logic itself, or possibly a
problem with the integration between the two layers.
Without the domain object unit test, it would be more
difficult to tell which layer in fact has a problem.

As mentioned earlier, unit tests should be based on the
defined requirements of the system, using use cases or
other documentation as guide. A functional
requirement will typically have implementation support
in many layers of the system, each layer adding some
necessary piece to allow the system to satisfy the
requirement, as determined in the design phase. Given
this, each unit test for each affected layer will need to
test the components to make sure they properly
implement their piece of the requirement. For example,
the order processing system described earlier might
have a requirement entitled “Discontinue Item”.

To satisfy this requirement, the system will need to
have a Business Process component that knows how to
load an item and discontinue it, as well as check to see
if any open orders contain this item. This in turn
requires that the Domain Object and Database layers
allow the Item object to be discontinued, perhaps
through a Discontinue() method, and that the Order
object supports searching for items in the order using an
ID. As you can see, each layer participates in satisfying
the requirement by providing methods or
implementation.

Preferably, each requirement will have a representative
test in the unit test program in each layer, where
applicable, to demonstrate that the layer provides the
functionality necessary to satisfy the requirement.

Using the previous example, the unit tests for each layer
will then include a TestDiscontinueItem method that
attempts to perform this requirement against the
components in the layer that have functionality related
to the requirement.

In addition to testing success cases of the requirement,
error cases (also known as exceptions) should be tested
as well to verify that the component gracefully handles
input errors and other unexpected conditions. For
example, a particular requirement states that the user
must provide a full name, which, as defined in the data
dictionary, should not exceed 30 characters. The unit
test, along with attempting a name of acceptable length,
should also attempt to specify a name of 31 characters
to verify that the component restricts this input

Develop unit tests in parallel or
before the implementation
Popularized by Extreme Programming, the concept of
developing unit tests prior to the actual software itself is
a useful one. Using this approach, it is necessary to
have requirements defined prior to the development of
unit tests, since they will be used as the guide for unit
test development. Note that a single requirement will
probably have implications on many unit tests in the
system, and these unit tests will need to check the
component for adherence to whichever part of the
requirement it needs to fulfill. See earlier in this article
for examples of requirement impact on a multi-layered
system.

There are many benefits to developing unit tests prior to
actually implementing a software component. First, and
most obvious, is that the software will be considered
complete when it provides the functionality required to
successfully execute the unit test, and no less. In this
way, the software is developed to meet the requirement,
and that requirement is strictly enforced and checked by
the unit test. The second benefit is the effect of
focusing the developer’s efforts on satisfying the exact

Page 6 of 42

problem, rather than developing a larger solution that
also happens to satisfy the requirement. This allows the
smallest possible solution to be developed, and will
most likely result in less code and a more
straightforward implementation. Another, more subtle
benefit is that if there is any question as to the
developer’s interpretation of the requirements, it will be
reflected in the unit test code. This provides a useful
reference point for determining what the code was
intended to do by the developer, versus what it is
supposed to do according to the requirements.

To properly take advantage of this technique, the
requirement documentation must be present and for the
most part complete prior to development. This is
usually regarded as the best approach, since developing
prior to the completion of requirements for a particular
function can be risky. Requirements should be
specified at a somewhat detailed level, allowing for the
required objects and functions to be easily determined1.
From the requirement documentation, the developer can
layout a general unit test strategy for the component,
including success and failure tests.

To ease the development of unit tests, developers
should consider an interface-based approach to
implementing components. Good software engineering
practice is to design software around interfaces, rather
than around how the components function internally.
Note that component or software interfaces are not the
same as “user interfaces”, which are intended to present
and retrieve information from the user through a
graphical or textual means. Component interfaces
usually consist of functions that can be called from
other components that will perform a specific task given
a set of input values. If the function names, inputs, and
outputs are specified and agreed upon, then the
implementation of the component is a separate matter.
Designing the interface first allows the developer to
layout the component from a high level, focusing on its
interaction with the outside world. It may also help
development of the unit test, since the component’s
interface can be “stubbed”, meaning the functions on
the interface are written to simply return a hard-coded
result, with no real logic. For example, consider the
following interface:

class Order
{

Create(orderName);
Delete();
AddItemToOrder(Item);

}

1 The RSI approach to use case analysis is an effective
way to document requirements from both the user and
system perspective. For more information on
requirements definition and RSI, see Quality Web
Systems, chapter 2 or visit www.ratio.co.uk/rsi.html.

The functions present in this interface were determined
by examining the requirements, which stated that the
system must provide a way to create an order, delete an
order, and add items to an order. For the purpose of
writing the unit test, among other things, the interface
can be stubbed, as in the following:

Create(orderName)
{
 return true;
}

Delete()
{
 return true;
}

AddItemToOrder(Item)
{
 return true;
}

As you can see, these interface “stubs” don’t actually do
anything useful, they simply return “true”. Since the
interface itself is valid, however, the benefit of stubbing
a component is that a unit test can be written (and
compiled, if necessary) against the interface, and will
still work properly once the functions are actually
implemented.

Unit tests can also assist in the development of the
interface itself, since it is useful at times to see how a
component will be actually used in code, rather than
simply seeing it on a design document. Implementing
the unit test may cause some refinements and other
“ease of use” type enhancements to the component,
since the process of implementing real code against an
interface tends to highlight deficiencies in its design.

In practice, it may be difficult to always develop unit
tests first, so in some situations, parallel unit test and
implementation development is acceptable. The
reasons for this are numerous – based on the
requirements, it may not be immediately obvious how
to design the best interface for the component, the
requirements may not be 100% complete due to some
outstanding questions, and other, non-requirement
related, factors such as time constraints. In these cases,
every attempt should still be made to define the
component’s interface as completely as possible up-
front, and develop a unit test for the known parts of the
interface. The remaining portions of the component and
unit test can evolve as development continues on the
component.

Updates to the requirements should be handled in a
manner similar to that of the initial implementation.
First, the unit test is modified with the new
requirements, which may include additional functions
on the component’s interface, or additional values to be

Page 7 of 42

taken and/or returned from the interface. In conjunction
with unit test development, the interface is updated with
the new parts necessary to allow the unit test to
function, with stubbed implementations. Finally, the
component itself is updated to support the new
functionality, at which point the developer has an
updated component that works with the new
requirements, along with an updated unit test.

Make unit test execution part of
the build process
Most software systems of significant size are comprised
of source code that must be compiled2, or “built”, into
an executable that can be used by the operating system.
There are usually many executable files in a system, and
those executables may use each other to accomplish
their work. In a large system, the time it takes to build
the entire code base can be quite significant, stretching
into hours or days depending on the capabilities of the
hardware doing the build. Many development
environments are such that each developer must also
build a “local” version of the software, on his or her
own machine, and then proceed to make the necessary
additions and modifications to implement new
functionality. The more code there is to compile, the
longer it will take to build, which is time that will be
spent by each developer as they build their local
versions of the system. In addition, if there is some
defect in a lower layer of the system, it may not
function properly, which could result in extensive
debugging time by the developer to determine why the
local version does not function properly.

As discussed earlier, unit test programs are a valuable
way to ensure that the software functions as specified
by the requirements. Unit test programs can also be
used to verify that the latest version of a software
component functions as expected, prior to compiling
other components that depend on it. This will eliminate
wasted build time, as well as allowing developers to
pinpoint which component of the system has failed, and
start immediately investigating that component.

In a layered software architecture, as described earlier,
layers build upon each other, with higher layers calling
down to lower layers to accomplish a goal, i.e.,
satisfying the requirement. Compiling a system such as
this requires that a layer must be present, meaning
compiled and ready for use, for the next layer up to
successfully compile and run. This kind of bottom-up
build process is common, and allows for reuse of layers,
as well as the separation of responsibilities among
developers.

2 Compiling is a term used by most development
environments to describe the act of producing an
executable module from a set of source code, such as a
collection of C++ files.

If unit tests have been written for the components in
each layer, it is usually possible to have the build
environment automatically execute the unit test
program(s) after the build of a layer is finished. This
could be done in a Makefile or a Post-build Step, for
example. If the unit test executes successfully, meaning
no errors or failures are detected in the layer’s
components, the build will continue to the next layer. If
the unit test fails, however, the build will stop at the
layer that failed. Tying a successful build to successful
unit test execution can avoid a lot of wasted build and
debugging time by developers, and it also ensures that
the unit tests are actually executed.

It is quite common that unit tests are written initially,
but are not updated, maintained, and executed on a
regular basis. Forcing the build to also execute the unit
test will ensure that these problems are avoided. This
comes with a price, however. When project schedules
are tight, especially during bug-fix and testing cycles,
there can be considerable pressure to turn fixes around
in very short time, sometimes in a period of minutes.
Updating the unit test programs to allow the layer to
build can seem like a nuisance, and possibly a waste of
time at that particular moment. It is important to keep
in mind, however, that the minimal time spent updating
a unit test can prevent hours of debugging and searching
for a defect. This is especially important if pressure is
high and source code is being modified at a fast pace.

Many development projects use automated builds to
produce regular releases of the system, sometimes on a
nightly basis, that include the latest changes to the code.
In an automated build situation, the failure of a
component to compile properly will halt the build until
the next day, until someone can rectify the issue with
the source code. This is, of course, unavoidable, since a
syntactical error in the source code must be examined
and corrected by a developer in order for the build to
proceed. Adding automated unit test execution to the
build will add another dimension of build quality, above
simply having a system that is syntactically correct and
therefore compiles. It will ensure that the product of an
automated build is in fact a successfully unit-tested
system. This ensures that the software is always in a
testable state, and does not contain major errors in the
components that can be caught in the unit tests.

One of the major issues of unit testing is its
inconsistency. Many software engineers do not follow a
uniform, structured approach to unit testing.
Streamlining and standardizing unit test programs is a
good way to lower their development time and avoid
differences in the way that they are used. This is
especially important if they are part of the build process,
since it is easier to manage unit test programs if they all
behave the same. For example, when encountering
errors, or processing command line arguments, the unit
tests should be predictable. Using a standard for unit
tests, it could be required that unit test programs all

Page 8 of 42

return zero for success, and one for failure, a result that
can be picked up by the build environment and used as
a basis for deciding if the build should continue. If no
standard is in place, different developers will probably
use different return values, thus complicating the
situation.

One way to achieve this goal is to create a unit test
framework. This framework handles processing the
command line arguments (if any), and reporting errors.
Typically, the framework is configured at startup with a
list of the necessary tests to run and calls them in
sequence. For example:

Framework.AddTest(CreateOrderTest)
Framework.AddTest(CreateCustomerTest)
Framework.AddTest(CreateItemTest)

Each test (i.e., CreateOrderTest, CreateCustomerTest,
and CreateItemTest) is a function that exists somewhere
in the unit test program. The framework will then
execute all of these tests by calling these functions, and
handle any errors that they report, as well as return the
result of the unit test as whole, usually pass or fail.
Having a framework such as this can reduce unit test
development time, since all that needs to be written and
maintained in each layer are the individual tests, not all
of the supporting error handling and other execution
logic. These “common” unit test functions are written
one time, in the framework itself. Each unit test
program simply implements the test functions, and
defers to the framework code for all other functionality,
such as error handling and command-line processing.

Since unit test programs are directly related to the
source code that they test, they should reside in the
project or workspace of the related source code. This
allows for effective configuration management of the
unit test, along with the components themselves, which
avoids “out-of-sync” problems. The unit tests are so
dependant on the underlying components, that it is very
difficult to manage them any other way but as part of
the layer. Having them reside in the same workspace or
project also makes it easier to automatically execute
them at the end of each build. The reusable portions of
a unit-testing framework, however, can exist elsewhere,
and simply be used by each unit test program as they
are built.

Summary

One of the most important ingredients of a high quality
software release is effective unit testing, i.e.
implemented by developers, ideally automated to be run
after each nightly automated build, and then handed off

to the testers can actually reuse some of the automated
unit tests to expand upon. My experience has shown
over and over again, that if unit testing is done properly,
later testing phases will be more successful. Lack of
developer unit or integration testing usually results in
releasing code with a high number of defects and is
often the cause for counterproductive, needlessly long
correction cycles, and is known to result in missed
release deadlines. Without unit testing in place,
changing even the smallest module can be fraught with
unknown implications and risks.

On the projects I have worked on where unit testing
played a major role in the development lifecycle and
was implemented efficiently and even automated, the
system testing lifecycle was much more effective in the
sense that System testing didn’t have to get bogged
down or stuck on unit testing issues that should have
been solved in the earlier development phases. And by
now almost everyone has seen the statistics that show
the earlier in the development lifecycle a defect is found
the cheaper it is to fix it.

Elfreide Dustin can be contacted via the Editor.

Subscribe for email delivery of

ObjectiveView
(in PDF format)

Email

objective.view@ratio.co.uk
with subject:
subscribe

Do check out back issues at:
www.ratio.co.uk/objectiveview.html

Page 9 of 42

advertismnet

http://www.objectiveviewmagazine.com/

Page 10 of 42

Retrospective agility – have you learned anything?

Tim Mackinnon, Agile Coach at ThoughtWorks, takes a looks at
agile software development “retrospectives” …

Agile, Extreme, Adaptive…
these words are cropping up
everywhere, from the new
car in a TV commercial to
the software project down
the hall. Everything is new
and exciting, and everyone
seems to be on the agile
bandwagon. But are they all

really in the same flexible world? In the keynote for
XP2005, Jutta Eckstein pointed out to the audience, "If
you are not holding retrospectives on your Agile
software projects, you are not doing Agile projects!" [1]

What did she mean? For many this might seem a
startling sentence, for others this might be “old hat” –
but it boils down to observations made years ago by
people we often quote but often fail to listen to. As Fred
Brooks observed in the “Mythical Man-Month” (1975):
“The techniques of communication and organisation
demand from the manager as much thought and as
much experienced competence as the software
technology itself” [2].

Twelve years later, Tom DeMarco and Timothy Lister
reminded us in “Peopleware” that “for the
overwhelming majority of bankrupt projects we studied,
there was not a single technological issue to explain the
failure” [3]. They further expand with, “Whatever you
name these people related problems, they’re more likely
to cause you trouble on your next assignment than all
the design, implementation and methodology issues
you’ll have to deal with”.

Just as Jutta points out, I believe that true agile projects
are effectively using retrospectives to counter the
effects of non-technical problems. This article describes
some of the background behind retrospectives, as well
as highlighting some common issues and solutions that
I have learned from enabling agile projects over the past
6 years.

Agile respects people

With all of these warnings of doom and gloom, how are
agile software projects faring? To consider this question
it’s worth briefly explaining the history of the term
“agile”. In early 2001, various originators and
practitioners of different methodologies met to work out
what it was they had in common. From this meeting
they discovered that they “all emphasized close
collaboration between the programmer team and

business experts; face-to-face communication; frequent
delivery of new deployable business value; tight, self-
organizing teams; and ways to craft the code and the
team such that the inevitable requirements churn was
not a crisis”[4]. At this meeting they also coined the
term “Agile”, formed the Agile Alliance and
documented what is now referred to as the Agile
Manifesto [5].

Interestingly, in this manifesto, two of the four items
prominently stand out as being people focused
activities:

• Individuals and interactions over
processes and tools

• Customer collaboration over contract
negotiation

Of course these items seem like common sense, and I’m
sure that many teams will quite happily quote the phrase
“people over process” (item 1, in the list above). But
referring back to the warnings of Brooks and DeMarco
– how do you really cope with the people and the
troubles they might be having with “the process”? How
do you ensure that your customer understands the
difficulties their demands might be imposing on the
team (or in fact ensure that they are truly part of the
team)?

Retrospectives help people
At ThoughtWorks, we have successfully used agile
methods on many different sized projects throughout
the UK, India, Australia and North America. We are
big advocates of agile development, however we too
have noticed that even with the best technical staff, the
messages of Brooks, DeMarco and Lister constantly
ring true. In a well oiled agile team, it is still possible to
encounter “problems that seem to eat away at the moral
fibre or the team” [6]. In fact many agile teams have
been mindful of this kind of problem [7] as was Martin
Fowler, our chief scientist at ThoughtWorks. In one of
his articles from early 2001 he identified the usefulness
of something called project retrospectives, adding:
“Over time, the team will find what works for them, and
alter the process to fit.”[8]. This observation fits well
with the idea of valuing collaboration, as well as
individuals and interactions as mentioned in the Agile
Manifesto.

So what exactly is a Project Retrospective? Norm Kerth
originally described it as:

retrospective (rèt´re-spèk-tîv) -- a
ritual held at the end of a project to

Page 11 of 42

learn from the experience and to plan
changes for the next effort. [9]

Although originally Kerth described them “at the end”
of a project, in Agile usage retrospectives are held
anywhere from weekly to monthly to assess how well
the team is working with regards to its process. In the
aforementioned efficient teams, as per Brooks and
Demarco, it’s quite common for issues to build up that
need a release. The act of taking Kerth’s advice and
taking the time to discuss “what has gone well”, “what
we should do differently” and “what puzzles us” in a
structured manner is extremely helpful for the team to

adjust its process or redistribute its resources more
effectively. Normally, during a retrospective a team will
build up a series of actions which they will prioritize
and select from to implement in the weeks following it.

To achieve this kind of result, a certain amount of
planning is required, something Kerth describes as a
process akin to planning a menu. He suggests
identifying a “starter”, then moving on to a “main
course” and finally finishing off with a “dessert”. He
classifies his exercises under these headings, as shown
in the table below:

Starters Main Courses Deserts
I’m too busy
Define Success
Create Safety

Artefacts Contest
Develop a Timeline
Emotions Seismograph
Offer Appreciations
Passive Analogy
Session Without Managers
Repair Damage Through Play

Making the Magic Happen
Change the Paper
Closing the Retrospective

Selecting appropriate “dishes” for the three stages of the
retrospective by understanding what the team needs,
results in an activity that can help them learn what is
most important.

Along with correct activities, I always find that it’s
important to make sure that everyone understands that
this is not an opportunity to place blame. Many people
shy away from retrospectives because of bad
experiences in the past where the event simply
degenerated into a “blame fest”. A great retrospective is
truly an opportunity to learn what things are going well
(so that they can be repeated) as well as learning what
things need to be improved. In this respect I always find
it important to read out what Kerth calls the “prime
directive”:

“Regardless of what we discover, we understand and
truly believe that everyone did the best job they
could, given what they knew at the time, their skills
and abilities, the resources available, and the
situation at hand.”

This sets the foundation for people to learn, and helps
them understand that this is really an opportunity to
learn.

While retrospectives are a useful practice for any team,
in the case of agile teams using XP practices,
retrospectives are particularly important. The tight
relationship between the practices, how they support
each other, and the principles and values that they are
derived from leaves lots of room for mismatches to
occur. If everyone is focusing on a particular practice

then there is a high probability that something else is
suffering in the development process and this is likely
to be causing issues somewhere else. Being able to
identify any other issues and actually talk about them in
an open and honest manner is fundamentally important.

Learning isn’t Easy

While there are many interesting and varied exercises
[9] that can used in project retrospectives to encourage
learning, there is one that stands out in importance,
“The Create Safety Exercise”. Ironically this exercise is
probably the easiest to perform, but it’s often skipped.
Essentially it consists of the following steps:

1. Make everything optional – stress that the

process is not about finding fault but one of
learning to improve for the next time.

2. Take a poll to find out how people feel. Ask
people to privately vote on whether they feel safe
enough to say what needs to be said.

3. Gather the ballots and tally them up for the
group to see how safe they feel.

For the second step, participants are asked to think of a
number between 1 and 5 that indicates their level of
safety, the scale we use is as follows:

Page 12 of 42

5. No Problem, I’ll talk about anything
4. I’ll talk about almost anything; a few things

might be hard
3. I’ll talk about some things, but others will be

hard to say
2. I’m not going to say much, I’ll let others bring

up issues
1. I’ll smile, claim everything is great and agree

with managers

The last item (smile and agree) is particularly important,
as while it’s a serious ranking, it usually breaks the
tension of the introduction.

A participant of one of my retrospectives once came up
to me and described a moment when he had been part of
an offsite meeting for his company. In this meeting
there was quite a serious agenda and many of the senior
executives of the company were present to talk about
“the issues”. He described to me the tension in the air,
and how he had longed for someone to step up and
perform a safety exercise. He personally hadn’t felt
safe, and he also felt that not many others in the room
felt very comfortable talking through the issues with
those senior executives either. Sadly, the meeting had
been a wasted opportunity with people playing lip
service to those executives instead of talking honestly
with them.

I always remember this story, and make it a point of
performing this simple exercise and noting the results
on the top of any records we take from the
retrospective. Even when you think that it’s not worth
bothering to check safety, this simple exercise can give
you some very useful insight.

For example, in a different situation I was helping
facilitate a two day offsite meeting. Events at the end of
the first day led to several attendees approaching the
facilitators to explain their concerns about the direction
of the meeting and how secure people felt. The
following morning we worked with the organiser to
help rebuild trust with the group. He was not convinced
that we needed to repeat the safety check exercise of the
previous day, he was positive that safety was low and
he just wanted to address the group and explain the
position he was in. However, we were keen to preserve
the ritual of the safety exercise, the fact that it makes
people consider how they feel, and that fact that the
attendees looked to us to ensure that safety was
maintained. We decided to go ahead with the exercise
and were all surprised to find that safety wasn’t as low
as we had assumed. While there were a number of
lower scores than the day before, the room wasn’t full
of 2’s (I’m not going to say much). With this
information in hand, the organiser was able to explain
his reasoning much more effectively than if he had
continued to assume that people weren’t safe and
weren’t going to say much. This is an important lesson:

Always perform a safety exercise even if you think it’s
not necessary, the information you gain is often
surprising.

As a final note, its worth mentioning that at times when
I have experienced lower scores than expected it can
sometimes be traced back to how you phrase the safety
question. Kerth very carefully describes: “remark that
there are managers in the room, and ask whether people
feel safe enough to say what needs to be said”. The
“managers” reference in my experience can be
misleading – there are many different reasons for people
to feel unsafe. However the real emphasis should be on
the “safe enough to say what needs to be said”. This is
particularly significant if you have new team members
who might not feel that they can contribute to the
content of the discussion. It is important to ensure that
before you ask people to rate their safety, that they
understand the agenda for the day, and that they also
understand the optionality of the exercises (as Kerth
describes) and finally, that they also understand that
everyone can usefully contribute to the event even if
they haven’t been involved in the project from day one.

A new project member can equally describe how easy it
is to pick up new things, or express confusion about
why things are done in a certain way. Therefore I now
ask people – “I want you to think about whether you
feel safe enough to say what needs to be said about this
project. We understand that different people have varied
experience, but we are interested in knowing whether
people feel able to share those different views with the
people in this room, not whether everyone knows
everything about the entire project.”

Dealing with the long haul

At ThoughtWorks we normally get called in to help
larger software projects that have a life span of years
rather than months. This is quite common, as software
projects rarely just stop when they are delivered. There
are often new features required by customers, who
having understand what is possible, now feel more
comfortable specifying what they would like for a
second version. This is particularly true with agile
development, where the iterative nature of delivering
features that a user has identified as being most
important, gives them more confidence in looking for
those things that they would like next. Given this longer
outlook, it becomes particularly important to consider
the health of the team as it is developing and supporting
the new features. Of course, “team” in this sense is not
just the developers writing code, but it also includes the
testers, any business analysts, and of course the users of
the real system and any management sponsors.

In this mixed team it is important to ensure that
everyone is able to communicate how they feel things

Page 13 of 42

are progressing, whether they think there are
improvements that would help make them more
effective, and whether there are as yet unidentified
opportunities that could improve productivity.

Interestingly, in the context of agile development, many
teams have discovered that holding retrospectives more
frequently is a key way to improving their ongoing
process and preserving their long term effectiveness [6].
In 2003, I worked with fellow retrospective facilitators
to categorize this difference. We came up with the
following categorizations:

Retrospective

Project Interim

Heartbeat* Work-Chunk

Custom*

In the class of Interim retrospectives, the term “Work-
chunk” never really became mainstream and this
possibly reflects the difficulty we had in coming up
with a generic term that people could agree on. I
personally prefer the term “Milestone” or “Release”
retrospective reflecting the idea that milestones or
releases are ideal opportunities to hold retrospectives.
However many in attendance at the meeting weren’t
happy with this usage as milestones often mean
different things to different people. On the other hand,
the term Heartbeat retrospective has become widely
used, however not in the way that was initially
proposed. The original intent was to reflect the idea that
holding retrospectives in a steady monotonic fashion
was important, like your heart beating. Your heart
doesn’t miss a beat, and my observation of 25+ monthly
retrospectives (not tied to iterations, but to calendar),
was that skipping one was equally as dangerous [6].

Over the past few years however, I have noticed that the
term “heartbeat” retrospectives has come to take on the
slightly different life of short, weekly retrospectives
(typically held at the end of every iteration, lasting 30
minutes or less). The vision in people’s minds is that
you heart beats relatively quickly, with each beat being
quite short. As this definition seems to have caught the
hearts and minds of the community I think it makes
sense to keep it.

Having tried lots of different styles of retrospective over
the last few years, I have come to the conclusion that in
the Agile world, there are still 4 styles of retrospective
that each have their own particular use, however I
would now draw the hierarchy with names as follows:

Retrospective

Project Interim

Iteration
“Heartbeat”

Release
“Alignment”

Incident

Project retrospectives
These are as defined by Kerth [9], and typically take 1
to 3 days depending on the project size, normally
occurring at its end. As the duration is quite long, it is
recommended that teams use an external facilitator.

Incident retrospectives
Rather than being pre-planned, these are differentiated
by the fact that something unexpected has happened,
and the team needs to learn from the experience with
short notice. Ideally they are also externally facilitated.

In the category of Interim retrospectives, there are two
types of retrospective that agile teams should definitely
consider.

Iteration heartbeat retrospectives
Typically most agile teams use iteration lengths of 1 to
2 weeks (although scrum teams might use slightly
longer), and following this short period of work the
team is well suited to making suggestions about process
changes. Typically these kinds of retrospectives are
quite informal and last anywhere from 15 to 60 minutes.
They can be self facilitated and the team ultimately
derives a list of actions that they will implement in the
next iteration.

It is this last point which raises a potential warning. I
have encountered teams who have told me that they
have experienced frustration in identifying actions
which they haven’t been able to deal with before the
next heartbeat arrives. This made them feel
overwhelmed and sometimes stressed, negating the
positive effect of having the retrospective in the first
place. My suggestion (and now current usage of these
kinds of retrospectives) is to get the team members
(before their iteration planning meeting) to each share 1
thing they thought went well that they want to repeat,
and one thing they would do differently. We record
these items on a flip chart and if appropriate quickly
vote to determine which item they would like to see
improved for the next iteration. During the following
iteration planning meeting, I typically try to make sure
that the team considers any of their observations when
estimating or suggesting proposed implementations.
Sometimes this might also suggest a card that can be
played in the iteration.

Page 14 of 42

Interestingly, I have also noticed that the product of
Iteration heartbeats is typically only process related
improvements, which aren’t particularly profound or
controversial. People are happy to make tweaks to their
ongoing process but they need more time to consider
larger issues.

Release alignment retrospectives

In the second edition of Extreme Programming
explained [11], Kent Beck describes the idea of
Quarterly releases and using this as a moment to reflect
on product direction, team dynamics and goal
alignment. This ties in perfectly with what I call Release
“Alignment” retrospectives. Typically these
retrospectives are planned well in advance and have a
suggested duration of 3-4 hours (I’ve often been asked
to reduce their duration, but teams just aren’t able to
cover the material and propose recommendations in less
than 3 hours). These retrospectives are more in line with
the menu of exercises described earlier. A typical
agenda for one would look as follows:

• Create Safety Exercise
• Project Health through Pictures
• Project Timeline
• Review “what went well”, “what didn’t go so well”
• Actions
• Top Tips for Future Projects

The “Top Tips” exercise is of interest in that it stemmed
from the observation that it was actually quite tricky
and time consuming trying to share information
between different project teams in larger organisations.
Rather than trying to “mine” information from different
teams, I decided to pose the question to each team as the
challenge: “You have just won the lottery and are
catching the plane to Hawaii in the morning. What tips
would you like to leave for your replacement team so
that they can continue your existing work, as well as be
successful in any new projects?”

What differentiates this type of retrospective from its
“heartbeat” counterpart is that team members have the
time and opportunity to comment on more than just
process related improvements. As teams become more
accustomed to working with each other (and this make
take time, requiring several retrospectives) they start to
take this opportunity to talk about issues of team
dynamics, personalities or failed approaches. For
example one team raised the thorny issue of whether
certain pairs were confusing refactoring with redesign,
and using it as a mechanism to make un-agreed
changes. These are much harder issues to confront
however they open the door for real productivity
improvements over and above the obvious process
related issues that are often discussed weekly. Another
team found that it didn’t appreciate the skills of each of
its members (and pre-work interviews showed people’s

misconceptions of each other). A Belbin team roles
exercise [13] followed by an appreciation exercise
[6][12] gave the team particularly profound insight into
how each team member could positively influence the
others.
As we noticed in [6], it is important to schedule these
kinds of retrospectives even if you think that no-one has
anything to say. It is often on these occasions that you
“Make the Magic Happen” [9] and someone will reveal
some profound insight. It is also during this time that
the team can also chart a course for future work and
how it will reorient itself to achieve that new direction.

Identifying opportunities for
innovation
While retrospectives are good at helping teams adapt
and cope, there is still a need to help them identify new
opportunities for improvement. We have experimented
with Gold Cards [10] as well as other innovation drivers
that aim to deliver benefits to our teams and to
ThoughtWorks. Our experience of using Gold Cards in
some projects has indicated that this technique
shouldn’t be introduced too early in a team’s
development. When a project has first started, team
members don’t always exhibit the stresses indicated in
the literature. Thus problems of “religious guilt” are not
always prevalent until a team has reached a stable
velocity and is efficiently creating business value above
all else. When a team does reach this plateau however,
Gold Cards are a very efficient and simple way of
managing self improvement.

“Away Days” on the other hand are a more traditional
way of ensuring that employees get an opportunity to
learn and share new skills which they feed back into
both their teams and company (in this case
ThoughtWorks). For a consulting company like
ThoughtWorks it’s also important to get employees
together to explore new ideas with their peers, as shared
innovation in technical teams is also the secret to high
morale [10]. Our CEO and founder is often known to
attend most regional “away days” to search for the
sessions that are crowded and bubbling with
enthusiasm, as these are the ideas of the future that
deserve more support.

In different offices (ThoughtWorks is a global
company) we are also experimenting with other
alternatives to foster our undeveloped ideas.
“Innovation Half Days” are an opportunity for
employees to sign up for and attend a mini “Open
Space”[17] where they share and experiment with hot
topics that need more development or exposure.
Following the session we hold a “Heartbeat”
retrospective to capture information that can be fed into
both the topics as well as the process of the half day.
We are optimistic that these experiments are paying off
with time saving techniques and an energized work
force.

Page 15 of 42

Common things that went well
Over the course of working with many of our different
Agile teams, there are many little gems that stand out.
The following are some of the items that commonly
crop up in successful agile teams.

Good team dynamics
• Everyone worked well together, and “gelled”, good

teamwork
• From original team to new team - they picked it up

very quickly.
• Not like other projects, always know who to talk to

(and get good answers)
• Have a team that takes pride in its work

Handled change well
• Even with unexpected changes in the project,

handled it well and “got on with it”
• Agile adapts well to changing requirements

Good agile attitude
• When changing priorities there were no complaints

(patience)
• It encouraged users to focus on things in more

detail

Standup meetings
• Shared good information efficiently
• Users involved in stand-ups and better understood

the issues
• A positive way to start the day

Pairing
• The transfer of knowledge through sharing works

well
• It results in better code
• Getting the best of two people’s designs
• The act of explaining helps you solve things more

quickly

Good user relationship
• Responded to users needs and still worked well

together
• We could step in and support users (they loved it)
• Users were often pleasantly surprised with the

results
• Good conversation around different options &

flexible solutions

Great continuous build environment
• Removed manual intervention – identical from dev

to live
• Continuous deployment testing gave confidence
• Allowed rapid changes even at the last minute

Sitting with the team
• Prevented isolation and helped each other better

understand
• Reinforced relationships between different team

roles

Test driven development
• Writing automated acceptance tests for the website
• Separating concerns via Mock Object approach
• Made tests more readable (good names, clear

intent)

Common things to improve
There are also many common gotchas that you need to
look out for, however its important to encourage people
to provide reccomendations along with those issues. I
ask people to write on a red post-it something they
"want to improve", along with a "reccomendation"
stuck beneath it on a yellow post-it.

Time pressure
• Acute pressure, full on
• Learning new things is tiring too
• Not being able to complete full stories

Recommendations:
• Ensure you do release planning, and visibly track

progress of releases and iterations

Test environments
• Too few environments available, shared servers

causing grief
• Not enough access rights to servers (to automate

things like data migration)

Recommendations:
• Make sure other departments are part of the team,

and they attend standup meetings

Business involvement is more than you think
• Agile needs business involvement all the way

through (it doesn’t tail off)
• Keep getting trivial feedback until users really have

to accept the full system (This is a shame as agile is
optimized for dealing with true feedback)

• Getting a formal commitment for user time (e.g. 1
or 2 days per week)

Recommendations:
• Invite users to the standup / hold standup

convenient for them.

Refactoring
• Is there dead code still left? Have we really done

enough?

Page 16 of 42

Recommendations
• Rotate in new staff, fresh blood helps identify

opportunities
• Adopt a can do/won’t put up with it attitude

Business acceptance criteria
• Getting acceptance criteria that shows something is

complete can be hard, temptation to plow on

Recommendations
• Don’t rely solely on technology, requires business

knowledge and involvement

Top tips for future projects
While these tips are often quite project specific, there
are some that re-occur between projects. Here are some
examples:

Nominate more than one user
• So you can ask questions from more than one

person as they will invariably be too busy when
you need them

Talk to other projects
• Ask for Retrospective Results from similar

domains
• Speak to staff who have experienced real projects

Other tips
• Automate From Day 1
• Use source control for OS and Application

configurations
• Have a single deployment script
• Do QA pairing

New techniques
While retrospectives are an important tool to guide the
successful delivery of agile projects, we are also
adopting, and in some cases pioneering, many new
techniques. The following are particularly interesting
ideas that we are using and experimenting with.

Giving an A
This technique was introduced to me at the
“Retrospective Facilitators Gathering – 2005” and is a
simple but effective idea that comes from the book "The
Art of Possibility"[14]. In the chapter "Giving an A",
the author (conductor of the Boston Philharmonic
orchestra) explains that his music students were so
terrified of their marks that they didn't experiment with
their music and really learn how to play. Thus he came
up with the idea that he would give every student an A.
He announced this in his class, but there was a caveat.
Each student had to write him a letter - dated next May,
which described (in the past tense) how getting that A
grade had changed their lives. They were also instructed

to avoid using phrases such as “I hope”, “I intend” or “I
will”.

Drawing from this idea, we have asked teams to write
similar letters to their managers indicating why their
team is a great place to work since he/she/they
changed….

We have also used this idea in the ThoughtWorks
“Quick Start” project inception workshops. In these
workshops user groups were asked to write a letter to
the project team, thanking them for the marvellous
product which has changed how they work. In
particular…

The letters that result from this exercise provide many
potential solutions and are often very moving to read.

Futurespectives
This exercise is related to the “TimeLine” exercise
described by Kerth [9], however I was helped to
develop it by attendees of the “Retrospective
Facilitators Gathering – 2005”, with inspiration from
“Giving an A” [14] and Luke Hohmann’s “Remember
the Future”[15]. Participants are asked to imagine that
they have stepped into a time machine and have
teleported to a time just after the completion of their
project (which in reality is just starting). As the project
was a success, its sponsors are keen to do a project
retrospective (and so we are examining the future past).

As we know the project was a success, there are many
successful events which should be recorded on the
timeline (as green post-its); however there may also
have been some things that potentially didn’t go well
(recorded as red post-its). Given that we know that the
team always managed to overcome any difficulties –
problematic events should always be followed by
amazingly successful actions that overcame the
difficulty (and the post-its on the timeline should
demonstrate this with green ones following any red).

Once the future timeline has been created, participants
are then asked to step back and mine it in a similar way
to a normal timeline, “what went well”, “what can we
do differently” and finally what actions should we take
for the upcoming project. Hohmann describes this as a
mind trick that helps people overcome blockages that
are limiting them from seeing potential solutions. Our
experiments with this exercise have proved quite
promising.

Appreciative Inquiry
This is an area that has piqued the interest of the
retrospective community; however it is a topic that
while deceptively simple, does require some training to
get right. “The idea of the appreciative eye, assumes
that in every piece of art there is beauty”. And so,
“Appreciative Inquiry suggests that we look for what
works in an organisation. The tangible result of the

Page 17 of 42

inquiry process is a series of statements that describe
where the organisation wants to be, based on the high
moments of where they have been. Because the
statements are grounded in real experience and history,
people know how to repeat their success” [16].

There is a lot of research that has gone into this
technique and we are still investigating how to
effectively combine it with our experience with
retrospectives, however this is definitely an area to
watch in the future.

Conclusion
There has been lots of literature written about the
importance of team members collaborating and
communicating with each other. While technical
problems are rarely to blame for project failure, many
approaches to software development choose to overlook
this important people aspect of delivery.

Importantly, Agile approaches to software development
have whole heartedly embraced this problem and made
it part of their process for delivering running software.
However, while it’s very easy to quote the mantra
“people over process” as outlined in the agile manifesto,
it’s another matter to actually implement the necessary
steps and learn from them.

Learning cannot be rushed, and far from just running a
quick project retrospective every week, you need to
periodically and systematically take the time to select
the appropriate exercises that will allow your team to
reflect on the true problems that it might be harbouring.
The process of discovering these little gems can prove
extremely rewarding both in terms of increased
productivity as well as long term sustainability for the
teams you have assembled.

A learning environment is a happy and productive
environment which is why company’s like
ThoughtWorks, and the clients we work with, are
investing increasingly more resources into making sure
that they learn from and incrementally improve the
projects they partake in.

About the author
Tim Mackinnon is a senior developer at ThoughtWorks,
where he coaches teams learning Agile Development as
well as facilitating workshops and retrospectives.

References
[1] http://www.xp2005.org/GuestLectures (last visited, July

2005)
[2] F. Brooks, “The Mythical Man-Month”, Addison

Wesley, 1975-1999
[3] T. Demarco, T. Lister, “PeopleWare”, Dorset House,

1987-1999

[4] Agile Alliance at :
http://www.agilealliance.org/programs/roadmaps/Roadm
ap/index.htm (last visited, July 2005)

[5] Agile Manifesto at:
http://www.agilealliance.org/programs/roadmaps/Roadm
ap/index.htm (last visited, July 2005)

[6] T. Mackinnon, "XP - call in the social workers", in
Extreme Programming and Agile Processes in Software
Engineering, Lecture Notes in Computer Science 2675,
M. Marchesi and G. Succi, Eds. Berlin: Springer, 2003,
pp. 288 - 297.

[7] C. Collins, R Miller, “Adaption XP Style”, in
Proceedings XP 2001

[8] M. Fowler, “The New Methodology” at,
http://www.martinfowler.com/articles/newMethodology.
html (last visited, July 2005)

[9] N. Kerth, “Project Retrospectives, a handbook for team
reviews”, Dorset House, 2001

[10] Higman, Mackinnon et al, “Innovation and Sustainability
with Gold Cards”, in Proceedings XP Universe, 2001

[11] K. Beck, “eXtreme Programming Explained: embrace
change. 2nd Edition”, San Francisco: Addison-Wesley,
2004.

[12] Nancy Kline. “Time To Think”. Ward Lock, 1999
[13] R. Belbin, “Management Teams, why they succeed or

fail”, Elsevier Butterworth-Heinemann, 1981-2004
[14] B. Zander, R Zander, “The Art of Possiblity”, Harvard

Business School Press, 2000
[15] Luke Hohmann, interview at:

http://www.enthiosys.com/wdocs/Interview-
SoftLetter041015.pdf (last visited, July 2005)

[16] S. Hammond, “The Thin Book of Appreciative Inquiry”,
Thin Book Publishing Co. 1998

[17] H. Owen, “Open Space Technology”, Berrett-Koehler
Publishers, 1997

Tim Mackinnon can be contacted via the Editor.

recruitment advertisment

ThoughtWorks are Recruiting
ThoughtWorks is always interested in hearing from
talented individuals interested in developing a career in
technology consultancy. Our leadership in the practical
application of Agile methods on enterprise-class
projects allows our staff to deliver higher quality
solutions more quickly and cost effectively, while
giving client business leaders greater program and
project control. We are currently hiring across all
functions, from Java J2EE and C# developers through
to Client Principals.

Be forewarned though: we're very selective. We only
want the best and the brightest and our hiring process
includes aptitude assessments and challenging
interviews. To apply go to www.thoughtworks.com/
uk/career/ onlineApplication.html.

To learn more about ThoughtWorks, visit our web sites
at http://www.thoughtworks.co.uk or email
work@thoughtworks.com.

Page 18 of 42

Advertisment

Enterprise Architect for Power Users provides a comprehensive, yet easy to access
tutorial on a wide range of advanced capbilities of the Enterprise Architect visual modeling software.

Topics include a discussion of how to set up EA in a variety of single and multi-user environments,
and strategies to support projects of any size, how to set up EA to store models in a variety of
popular version control systems.

There's a tutorial on UML 2 that explains what's new with this major new release of the UML
standard, which is fully supported in Enterprise Architect. UML 2 topics include ports and interfaces
on component diagrams, the addition of Timing diagrams to UML, and much more.

There's also information on EA's extensions beyond standard UML, for example, it's powerful built-
in requirements tracking capability as well as EA's Code Engineering framework, which supports
Forward and Reverse Engineering of source code, and Model/Code synchronization.

EA's Data Modeling capabilities are explained in detail, and the tutorial features over 30 narrated
Step-By-Step demonstrations of specific features of the EA software, such as Importing DDL
Schema

Order your copy today for just $149 from www.iconixsw.com or by phone 310-458-0092.
You can also order EA for Power Users together with Mastering UML with Enterprise Architect and
the ICONIX Process for just $199. Or, try the ICONIX PowerPack which includes a both tutorials
plus a copy of EA Corporate Edition for just $375.

Page 19 of 42

Turning Comments into Code

Kent Tong (Tong Ka Iok) – Author of
“Essential skills for Agile
Development” – discusses how to turn
comments into code.

Introduction

Consider a conference management application. In the
conference, every participant will wear a badge. On the
badge there is some information of the participant (e.g.,

name, etc.). In the application the Badge class below is
used to store this information. Please read the code and
comments below:

//It stores the information of a participant to be printed on his badge.
public class Badge {
 String pid; //participant ID
 String engName; //participant's full name in English
 String chiName; //participant's full name in Chinese
 String engOrgName; //name of the participant's organization in English
 String chiOrgName; //name of the participant's organization in Chinese
 String engCountry; //the organization's country in English
 String chiCountry; //the organization's country in Chinese

 //***********************
 //constructor.
 //The participant ID is provided. It then loads all the info from the DB.
 //***********************
 Badge(String pid) {
 this.pid = pid;
 //***********************
 //get the participant's full names.
 //***********************
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(pid);
 if (part != null) {
 //get the participant's full name in English.
 engName = part.getELastName() + ", " + part.getEFirstName();
 //get the participant's full name in Chinese.
 chiName = part.getCLastName()+part.getCFirstName();
 //***********************
 //get the organization's name and country.
 //***********************
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 //find the ID of the organization employing this participant.
 String oid = orgsInDB.getOrganization(pid);
 if (oid != null) {
 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engCountry = org.getEAddress().getCountry();
 chiCountry = org.getCAddress().getCountry();
 }
 }
 }
 ...
}

Page 20 of 42

Turn comments into code, making the
code as clear as the comments

Consider the first comment:

//It stores the information of a participant to be
// printed on his badge.
public class Badge {
 ...
}

Why do we need this comment? Because the
programmer thinks the name "Badge" is not clear
enough, so he writes this comment to complement this
insufficiency. However, if we can use this comment

directly as the name of the class, the name will be
almost as clear as the comment, then we will not need
this separate comment anymore, e.g.:

public class ParticipantInfoOnBadge {
 ...
}

Why do that? Isn't writing comments a good
programming style? Before the explanation, let's see
how to turn the other comments in the above example
into code.

Turn comments into variable names

Consider:

public class ParticipantInfoOnBadge {
 String pid; //participant ID
 String engName; //participant's full name in English
 String chiName; //participant's full name in Chinese
 String engOrgName; //name of the participant's organization in English
 String chiOrgName; //name of the participant's organization in Chinese
 String engCountry; //the organization's country in English
 String chiCountry; //the organization's country in Chinese
 ...
}

We can turn the comments into variables, then delete
the separate comments, e.g.:

public class ParticipantInfoOnBadge {
 String participantId;
 String participantEngFullName;
 String participantChiFullName;
 String engOrgName;
 String chiOrgName;
 String engOrgCountry;
 String chiOrgCountry;
 ...
}

Turn comments into parameter names
Consider:

public class ParticipantInfoOnBadge {
 ...
 //***********************
 //constructor.
 //The participant ID is provided. It then
 // loads all the info from the DB.
 //***********************
 ParticipantInfoOnBadge(String pid) {
 this.pid = pid;
 ...
 }
}

We can turn the comments into parameter names, then
delete the separate comments, e.g.:

public class ParticipantInfoOnBadge {
 ...
 //***********************
 //constructor.
 //It loads all the info from the DB.
 //***********************
 ParticipantInfoOnBadge(
 String participantId)
 {
 this.participantId = participantId;
 ...
 }
}

Turn comments into a part of a method
body
How do we get rid of the comment "It loads all the info
from the DB" in the above example? It describes how
the constructor of ParticipantInfoOnBadge is
implemented (load the information from the database),
therefore, we can turn it into a part of the body of the
constructor, then delete it:

Page 21 of 42

public class ParticipantInfoOnBadge {
 ...
 //***********************
 //constructor.
 //***********************
 ParticipantInfoOnBadge(String participantId) {
 loadInfoFromDB(participantId);
 }
 void loadInfoFromDB(String participantId) {
 this.participantId = participantId;
 ...
 }
}

Delete useless comments
Sometimes we may come across some comments that
are obviously useless, e.g.:

public class ParticipantInfoOnBadge {
 ...
 //***********************
 //constructor.
 //***********************
 ParticipantInfoOnBadge(String participantId) {
 ...
 }
}

This comment is useless because even without it anyone
can tell that this is a constructor. It not only is useless,
but also takes up the precious visual space: A screen can
display at most 20 and odds lines, but this useless
comment already takes up 3 lines, squeezing out the
useful information (e.g., code), making this code
fragment hard to understand. Therefore, we should
delete it as quickly as possible:

public class ParticipantInfoOnBadge {
 ...
 ParticipantInfoOnBadge(
 String participantId) {
 ...
 }
}

Extract some code to form a method
and use the comment to name the
method

Consider the first comment below:

void loadInfoFromDB(String participantId) {
 this.participantId = participantId;
 //***********************
 //get the participant's full names.
 //***********************
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(participantId);
 if (part != null) {
 //get the participant's full name in English.
 engFullName = part.getELastName() + ", " + part.getEFirstName();
 //get the participant's full name in Chinese.
 chiFullName = part.getCLastName()+part.getCFirstName();
 //***********************
 //get the organization's name and country.
 //***********************
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 //find the ID of the organization employing this participant.
 String oid = orgsInDB.getOrganization(participantId);
 if (oid != null) {
 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engOrgCountry = org.getEAddress().getCountry();
 chiOrgCountry = org.getCAddress().getCountry();
 }
 }
 }

Page 22 of 42

This comment says that the code fragment following it
will get the full name of the participant. In order to
make the code fragment as clear as this comment, we

can extract the code fragment into a method and use this
comment to name the method, making this separate
comment no longer necessary:

 void loadInfoFromDB(String participantId) {
 this.participantId = participantId;
 getParticipantFullNames();
 //***********************
 //get the organization's name and country.
 //***********************
 //find the ID of the organization employing this participant.
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 String oid = orgsInDB.getOrganization(participantId);
 if (oid != null) {
 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engOrgCountry = org.getEAddress().getCountry();
 chiOrgCountry = org.getCAddress().getCountry();
 }
 }
 void getParticipantFullNames() {
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(participantId);
 if (part != null) {
 //get the participant's full name in English.
 engFullName = part.getELastName() + ", " + part.getEFirstName();
 //get the participant's full name in Chinese.
 chiFullName = part.getCLastName()+part.getCFirstName();
 }
 }

Likewise, the code fragment to get the information of
the organization of the participant can be extracted into

a method and be named by the comment, making the
comment unnecessary:

 void loadInfoFromDB(String participantId) {
 this.participantId = participantId;
 getParticipantFullNames();
 getOrgNameAndCountry();
 }
 void getParticipantFullNames() {
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(participantId);
 if (part != null) {
 //get the participant's full name in English.
 engFullName = part.getELastName() + ", " + part.getEFirstName();
 //get the participant's full name in Chinese.
 chiFullName = part.getCLastName()+part.getCFirstName();
 }
 }
 void getOrgNameAndCountry() {
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 //find the ID of the organization employing this participant.
 String oid = orgsInDB.getOrganization(participantId);
 if (oid != null) {

Page 23 of 42

 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engOrgCountry = org.getEAddress().getCountry();
 chiOrgCountry = org.getCAddress().getCountry();
 }
 }

An extracted method can be put into
another class

Consider the two comments below:

public class ParticipantInfoOnBadge {
 ...
 void getParticipantFullNames() {
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(participantId);
 if (part != null) {
 //get the participant's full name in English.
 engFullName = part.getELastName() + ", " + part.getEFirstName();
 //get the participant's full name in Chinese.
 chiFullName = part.getCLastName()+part.getCFirstName();
 }
 }
}

As the programmer thinks these code fragments not
clear enough, then he should extract them and use the
comments to name them. But this time the extracted

methods should be put into the Participant class instead
of the ParticipantInfoOnBadge class:

public class ParticipantInfoOnBadge {
 ...
 void getParticipantFullNames() {
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(participantId);
 if (part != null) {
 engFullName = part.getEFullName();
 chiFullName = part.getCFullName();
 }
 }
}
public class Participant {
 String getEFullName() {
 return getELastName() + ", " + getEFirstName();
 }
 String getCFullName() {
 return getCLastName() + getCFirstName();
 }
}

Use a comment to name an existing method

Consider the comment below:

public class ParticipantInfoOnBadge {

Page 24 of 42

 ...
 void getOrgNameAndCountry() {
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 //find the ID of the organization employing this participant.
 String oid = orgsInDB.getOrganization(participantId);
 if (oid != null) {
 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engOrgCountry = org.getEAddress().getCountry();
 chiOrgCountry = org.getCAddress().getCountry();
 }
 }
}

We need the comment of "find the ID of the
organization employing..." only because the name

"getOrganization" is not clear enough, so, we should
directly use the comment as the name:

public class ParticipantInfoOnBadge {
 ...
 void getOrgNameAndCountry() {
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 String oid = orgsInDB.findOrganizationEmploying(participantId);
 if (oid != null) {
 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engOrgCountry = org.getEAddress().getCountry();
 chiOrgCountry = org.getCAddress().getCountry();
 }
 }
}
public class OrganizationsInDB {
 ...
 void findOrganizationEmploying(String participantId) {
 ...
 }
}

The improved code

The improved code is shown below (all the comments
have been turned into code and no longer exist
separately):

public class ParticipantInfoOnBadge {
 String participantId;
 String participantEngFullName;
 String participantChiFullName;
 String engOrgName;
 String chiOrgName;
 String engOrgCountry;
 String chiOrgCountry;

 ParticipantInfoOnBadge(String participantId) {
 loadInfoFromDB(participantId);
 }
 void loadInfoFromDB(String participantId) {
 this.participantId = participantId;

Page 25 of 42

 getParticipantFullNames();
 getOrgNameAndCountry();
 }
 void getParticipantFullNames() {
 ParticipantsInDB partsInDB = ParticipantsInDB.getInstance();
 Participant part = partsInDB.locateParticipant(participantId);
 if (part != null) {
 participantEngFullName = part.getEFullName();
 participantChiFullName = part.getCFullName();
 }
 }
 void getOrgNameAndCountry() {
 OrganizationsInDB orgsInDB = OrganizationsInDB.getInstance();
 String oid = orgsInDB.findOrganizationEmploying(participantId);
 if (oid != null) {
 Organization org = orgsInDB.locateOrganization(oid);
 engOrgName = org.getEName();
 chiOrgName = org.getCName();
 engOrgCountry = org.getEAddress().getCountry();
 chiOrgCountry = org.getCAddress().getCountry();
 }
 }
}

Why delete the separate comments?

Why delete the separate comments? In fact, comments
by themselves are not bad. The problem is that we often
do not write clear code (because it is hard), so we take a
shortcut (use comments) to hide the problem. The result
is, nobody will try to make the code clearer. Later, as
the code is updated, commonly nobody updates the
comments accordingly. In time, opposed to making the
code easier to read, these outdated comments will
actually mislead the readers. At the end of the day, what
we have is: Some code that is unclear by itself, mixed
with some incorrect comments.

Therefore, whenever we see a comment or would like to
write one, we should think twice: Can the comment be
turned into code, making the code as clear as the
comment? You will find that in most of the time the
answer is yes. That is, every comment in the code is a
good opportunity for us to improve our code. To say in
another way, if the code includes a lot of comments, it
probably means that the code quality is not that high
(however, including a few or no comments does not
necessarily mean the code quality is high).

Method name is too long
Consider the example below:

class StockItemsInDB {
 //find all the stock items from overseas whose inventory is smaller than 10.
 StockItem[] findStockItems() {
 ...
 }
}

In order to turn this comment into code, in principle we
should change the code like this:

class StockItemsInDB {
 StockItem[] findStockItemsFromOverseasWithInventoryLessThan10() {
 ...
 }
}

Page 26 of 42

However, this method name is too long, warning us that
the code has problems. What should we do? We should
determine: Is the customer of this system really only
interested in those stock items from overseas and whose
inventory are less than 10? Would he be interested in

those stock items from overseas and whose inventory
are less than 20? Would he be interested in those stock
items from local and whose inventory are greater than
25? If yes, we can turn the comment into parameters:

class StockItemsInDB {
 StockItem[] findStockItemsWithFeatures(
 boolean isFromOverseas,
 InventoryRange inventoryRange) {
 ...
 }
}
class InventoryRange {
 int minimumInventory;
 int maximumInventory;
}

If the customer is really only interested in those stock
items from overseas and whose inventory are less than
10, he must have some particular reason (why only
those but not the others?). After further conversation he
may say it is because he needs to replenish the stock,
because the shipping from overseas takes longer.

Therefore, we find out that what he is really interested
is the stock items that need replenishing, instead of
those from overseas and whose inventory are less than
10. Therefore, we can turn the real purpose into the
method name and turn the comment into the method
body:

class StockItemsInDB {
 StockItem[] findStockItemsToReplenish() {
 StockItem stockItems[];
 stockItems = findStockItemsFromOverseas();
 stockItems = findStockItemsInventoryLessThan10(stockItems);
 return stockItems;
 }
}

References
• http://c2.com/cgi/wiki?TreatCommentsWithSuspici

on.

Kent Tong can be contacted via the Editor.

adverstisment

Subscribe for email delivery of

ObjectiveView
(in PDF format)

Email: objective.view@ratio.co.uk with subject: subscribe

Do check out back issues at:
www.objectiveviewmagazine.com

Page 27 of 42

Agile Model Driven Development (AMDD)

Scott Ambler
gives
ObjectiveView
his latest
update on agile
modeling…

Abstract
Agile Modeling (AM)
defines a collection of
values, principles, and

practices which describe how to streamline your
modeling and documentation efforts. These practices
can be used to extend agile processes such as Extreme
Programming (XP) and Scrum to make modeling and
documentation explicit activities and Rational Unified
Process (RUP) and Enterprise Unified Process (EUP) to
make modeling and documentation less dysfunctional.
The Agile Model Driven Development (AMDD)
lifecycle describes an approach for applying AM in
conjunction with agile implementation techniques such
as Test Driven Development (TDD), code refactoring,
and database refactoring.

Modeling is an important part of all software
development projects because it enables you to think
through complex issues before you attempt to address
them via code. Unfortunately many modeling efforts
prove to be dysfunctional. At one end of the spectrum
are projects where no modeling is performed, either
because the developers haven’t any modeling skills or
because they have abandoned modeling as a useless
endeavor.

At the other end of the spectrum are projects which sink
in a morass of documentation and overly detailed
models, either because the project team suffers from
“analysis paralysis” and finds itself unable to move
forward or because the team has burdened itself with
too many modeling specialists who don’t have the skills
to move forward even if they wanted to.

Somewhere in the middle are project teams that invest
in modeling and documentation efforts only to discover
that the programmers ignore the models anyway, often
because the models are unrealistic or simply because the
programmers think they know better than the modelers
(and often they do).

We need to find a way to avoid these problems, to gain
the benefits of modeling and documentation without

suffering the drawbacks. This is what Agile Model
Driven Development (AMDD) is all about.

Agile Models
A model is an abstraction that describes one or more
aspects of a problem or a potential solution addressing a
problem. Traditionally, models are thought of as zero or
more diagrams plus any corresponding documentation.
However non-visual artifacts such as use cases, a
textual description of one or more business rules, or a
collection of class responsibility collaborator (CRC)
cards [1] are also models. An agile model [2] is a model
that is just barely good enough.

Agile models are just barely good enough when they
exhibit the following traits:
• Agile models fulfill their purpose.
• Agile models are understandable.
• Agile models are sufficiently accurate.
• Agile models are sufficiently consistent.
• Agile models are sufficiently detailed.
• Agile models provide positive value.
• Agile models are as simple as possible.

Figures 1 and 2 both depict agile models. Figure 1
shows a hand-drawn screen design sketch which was
drawn in collaboration with users in order to identify
what they felt a potential screen should look like.

Figure 2 depicts a physical data model (PDM) using the
Unified Modeling Language (UML) notation [3] – it is
possible to data model effectively using the UML. Both
models are agile even though they’re very different
from each other:

• The data model is very likely a keeper whereas the

screen sketch would be discarded once it’s served it
has purpose.

• The data model was created using a sophisticated

modeling tool whereas the screen sketch was
created using very simple tool.

• The data model was created using a complex

notation, yet the screen sketch is clearly free-form.

• The data model depicts technical, detailed design

whereas the screen sketch is more of an analysis-
level diagram.

Page 28 of 42

Figure 1: A hand-drawn screen sketch.

It is important to distinguish between the orthogonal
concepts of models and documents: some models
become documents, or parts of documents, although
many models are discarded after they have been used. I
suspect that 90% or more of all models are discarded –
how many whiteboard sketches have you erased

throughout your career? For the sake of definition a
document is a permanent record of information, and an
agile document [2] is a document that is just barely
good enough. The principles and practices of Agile
Modeling, described in the next section, are applicable
to both modeling and documentation.

Figure 2: A physical data model (PDM).

Page 29 of 42

Agile Modeling (AM)
The Agile Modeling (AM) process [2] is a chaordic
collection of practices – guided by principles and values
– that should be applied by software professionals on a
day-to-day basis. The focus of AM is to make your
modeling and documentation efforts lean and effective;
AM does not address the complete system lifecycle and
thus should be characterized as a partial
process/process. The advantage of this approach is that
organizations may benefit from the focused guidance of
a partial process. The disadvantages are that
organizations need the requisite knowledge and skills to
know which processes exist and how to combine them
effectively. The concept of partial processes seems
strange at first, but when you reflect a bit you quickly
realize that partial processes are the norm –
development processes, such as Extreme Programming
(XP) [4] and the Rational Unified Process (RUP) [6],
address the system development lifecycle but do not
address the full IT lifecycle. The Enterprise Unified
Process (EUP) [7] – an extension to the RUP which
addresses the production and retirement phases of a
system, operations and support of a system, and cross-
system issues such as enterprise architecture and
strategic reuse – and ISO/IEC 12207-compliant
processes [18] represent full IT lifecycles.

AM is practices-based, it is not prescriptive. In other
words it does not define detailed procedures for how to
create a given type of model, instead it provides advice
for how to be effective as a modeler. The advantage of
describing a process as a collection of practices is that it
is easy for experienced professionals to learn and
reflects (hopefully) what they actually do, the
disadvantage is that it does not provide the detailed
guidance for novices. Prescriptive processes, on the
other hand, often provide the detailed guidance required
by novices but are ignored by experienced
professionals. Prescriptive processes are well suited as
training material for new hires and perhaps as input into
process audits to fulfill the requirement that you have a
well documented process.

Think of AM as more of an art than a science. It is
defined as a collection of values
(www.agilemodeling.com/values.htm), principles

(www.agilemodeling.com/principles.htm), and practices
(www.agilemodeling.com/practices.htm). The values of
AM include those of XP v1 – communication,
simplicity, feedback, and courage – and extend it with
humility (XP v2 adds the fifth value of respect, which I
argue comes from humility). The principles of AM,
many of which are adopted or modified from XP,
provide guidance to agile developers who wish to be
effective at modeling and documentation. They provide
a philosophical foundation from which AM’s practices
are derived. The practices of AM are what people
actually do. There is not a specific ordering to the
practices, nor are there detailed steps to complete each
one – you simply do the right thing at the right time.

Because every project team is different, and every
environment is different, you should tailor your process
to reflect your situation. AM reflects this philosophy –
to claim that you are “doing AM” you merely need to
adopt its values, its core principles and practices (see
Table 1). The remaining principles and practices are
optional, although they are very good ideas and should
be adopted whenever possible. All of the values,
principles, and practices are presented in detail at
www.agilemodeling.com. This approach enables you to
tailor AM to meet your exact needs. Table 2 lists the
supplementary principles and practices although for
brevity does not describe them in detail.

Why would you want to adopt AM? AM defines and
shows how to take a light-weight approach to modeling
and documentation. What makes AM a catalyst for
improvement is not the modeling techniques themselves
– such as use case models, class models, data models, or
user interface models – but how to apply them
productively. As depicted in Figure 3, AM can be
tailored into other agile software development
processes, such as XP or Feature Driven Development
(FDD) [5], to enhance their modeling and
documentation efforts. AM can also be tailored into
“near-agile” processes, such as the RUP or EUP.
Although you must be following an agile software
process to truly be agile modeling, but you may still
adopt and benefit from many of AM’s practices on non-
agile projects.

Figure 3: Tailoring AM into your software process.

Page 30 of 42

Core Principles Core Practices
• Assume Simplicity
• Embrace Change
• Enabling the Next Effort is Your

Secondary Goal
• Incremental Change
• Maximize Stakeholder Investment
• Model With a Purpose
• Multiple Models
• Quality Work
• Rapid Feedback
• Software is Your Primary Goal
• Travel Light

• Active Stakeholder Participation
• Apply the Right Artifact(s)
• Collective Ownership
• Create Several Models in Parallel
• Create Simple Content
• Depict Models Simply
• Display Models Publicly
• Iterate To Another Artifact
• Model in Small Increments
• Model With Others
• Prove it With Code
• Single Source Information
• Use the Simplest Tools

Table 1. The core principles and practices of AM.

Supplementary Principles Supplementary Practices

• Content is more important than
representation

• Open and honest communication
• Work with people’s instincts

• Apply modeling standards
• Apply patterns gently
• Discard temporary models
• Formalize contract models
• Update only when it hurts

Table 2. Supplementary principles and practices.

Agile Model Driven Development
(AMDD)

As the name implies, AMDD is the agile version of
Model Driven Development (MDD). MDD is an
approach to software development where extensive
models are created before source code is written. A
primary driver of MDD is the Object Management
Group (OMG)’s Model Driven Architecture (MDA)
standard [11]. With MDD the goal is typically to create
comprehensive models, and then ideally generate
software from those models. This often requires
complex computer aided system engineering (CASE)
tools, so it is not surprising to discover that CASE tool
vendors are often rabid proponents of MDD and MDA.
I’m not convinced that the MDA is going to get much
traction within the IT industry [15], if only for the
simple reason that few IT professionals have the
sophisticated modeling skills which MDA requires.
AMDD applies the AM values, principles, and practices
to an MDD-based approach.

AMDD takes a much more realistic approach: its goal is
to describe how developers and stakeholders can work
together cooperatively to create models which are just
barely good enough. It assumes that each individual
has some modeling skills, or at least some domain
knowledge, that they will apply together in a team in
order to get the job done.

It is reasonable to assume that developers will
understand a handful of the modeling techniques
indicated in Figure 4 but not all of them. It is also
reasonable to assume that people are willing to learn
new techniques over time, often by working with
someone else that already has those skills. AMDD does
not require everyone to be a modeling expert, it just
requires them to be willing to try.

AMDD also allows people to use the most appropriate
modeling tool for the job, often very simple tools such
as whiteboards or paper, because you want to find ways
to communicate effectively, not document
comprehensively. There is nothing wrong with
sophisticated CASE tools in the hands of people who
know how to use them, but AMDD does not depend on
such tools.

Page 31 of 42

Figure 4: Categories of modeling and some suggested techniques.

Figure 5 depicts a high-level lifecycle for AMDD for
the release of a system [9]. Each box represents a
development activity. The initial up front modeling
activity occurs during cycle/iteration 0 and includes two
main sub-activities, initial requirements modeling and
initial architecture modeling. The other activities –

model storming, reviews, and implementation –
potentially occur during any cycle, including cycle 0.
The time indicated in each box represents the length of
an average session: perhaps you will model for a few
minutes then code for several hours.

Figure 5. Taking an AMDD approach to development.

Page 32 of 42

Initial Modeling
The initial modeling effort is typically performed during
the first week of a long-term project. For short projects
(perhaps several weeks in length) you may do this work
in the first few hours and for longer projects (perhaps on
the order of twelve or more months) you may decide to
invest up to two weeks in this effort. You should not
invest any more time than this as you run the danger of
over modeling and of modeling something that contains
too many problems (two weeks without the concrete
feedback that implementation provides is a long time to
go at risk).

Initial modeling occurs during cycle 0, the only time
that an agile modeler will spend more than an hour or
two at once modeling because they follow the practice
Model in Small Increments. During cycle 0 you are
likely to identify high-level usage requirements models
such as a collection of use cases or user stories; identify
high-priority technical requirements and constraints;
create a high-level (sparse) domain model; and draw
sketches representing critical architectural aspects of
your system. In later cycles both your initial
requirements and your initial architect models will need
to evolve as you learn more, but for now the goal is to
get something that is just barely good enough so that
your team can get coding. In subsequent releases you
may decide to shorten cycle 0 to several days, several
hours, or even remove it completely as your situation
dictates.

Model storming
During development cycles you explore the
requirements or design in greater detail, and your
“model storming” sessions are often on the order of
minutes. Model storming is a just-in-time (JIT)
approach to modeling with a twist – you model just in
time and just enough to address the issue at hand.
Perhaps you will get together with a stakeholder to
analyze the requirement you’re currently working on,
create a sketch together at a whiteboard for a few
minutes, and then go back to coding. Or perhaps you
and several other developers will sketch out an
approach to implement a requirement, once again
spending several minutes doing so. Or perhaps you and
your programming pair will use a modeling tool to
model in detail and then generate the code for that
requirement. Model storming sessions shouldn’t take
more than 15 or 20 minutes, otherwise you’re likely not
following the AM practice Iterate to Another Artifact
properly, and often take a few minutes at most.

It’s important to understand that your initial
requirements and architecture models will evolve
through your detailed modeling and implementation
efforts. That’s perfectly natural. Depending on how

light you’re travelling, you may not even update the
models if you kept them at all.

You may optionally choose to hold model reviews and
even code inspections, but these quality assurance (QA)
techniques really do seem to be obsolete with agile
software development. Although many traditionalists
consider model reviews to be best practices they’re
really “compensatory practices” that compensate for
common process-oriented mistakes such as:
• Distributing your team across several locations,

thereby putting you at risk that the teams are not
aware of what the others are doing.

• For allowing one person or a subset of people
(often specialists) to “own” the model, thereby
putting you at risk that the model is of poor quality
or does not reflect the work of the others on the
team.

• For long feedback loops, such as a (near) serial
approach to development when it can be months or
even years between modeling and coding activities.

When you follow AM’s practices of Active Stakeholder
Participation, Collective Ownership, Model With
Others, and Prove it With Code you typically avoid
these problems. The high-communication and open
environment enjoyed by agile modelers ensures that
many people, if not everyone on the team, works with
all artifacts. This ensures that many “sets of eyes” see
any given model, thereby increasing the chance that
mistakes are found early. The focus on producing
working software ensures that the ideas captured in
models are quickly put to the test – very often
something will be modeled and then implemented the
very same day. In these environments the value of
reviews quickly disappears.

Implementation
Implementation is where your team will spend the
majority of its time. During development it is quite
common to model storm for several minutes and then
code, following common agile implementation practices
for several hours or even days. These implementation
practices are:
• Code refactoring. Refactoring [12] is a disciplined

way to restructure code to improve its design. A
code refactoring is a simple change to your code
that improves its design but does not change its
behavioral semantics. In other words a code
refactoring does not add new functionality.
 Common code refactorings include Rename
Process, Remove Control Flag, Change Value to
Reference, and Move Process.

• Database refactoring. A database refactoring [10]

is a simple change to a database schema that
improves its design while retaining both its
behavioral and informational semantics. There are

Page 33 of 42

different types of database refactorings. Some
focus on data quality (such applying a consistent
format to the values stored in a column), some
focus on structural changes (such as renaming or
splitting a column), whereas others focus on
performance enhancements (such as introducing an
index). Structural database refactorings are the
most challenging because a change to the structure
of your database could cause your application (or
others) to crash.

• Test-Driven Design (TDD). Test-driven

development (TDD) [13, 14], also known as test-
first programming or test-first development, is an
approach where you identify and write your tests
before your write your code. There are four basic
steps to TDD. First, you quickly add a test (just
enough code to fail), the idea being that you should
refuse to write new code unless there is a test that
fails without it. The second step is to run your
tests, either all or a portion of them, to see the new
test fail. Third, you make a little change to your
code, just barely enough to make your code pass
the tests. Next you run the tests and hopefully see
them all succeed – if not you need to repeat step 3.
There are several advantages of TDD. First, it
ensures that you always have a 100% unit
regression test suite in place, showing that your
software actually works. Second, TDD enables you
to refactor your code safely because you know you
can find anything that you “break” via a
refactoring. Third, TDD provides a way to think
through detailed design issues, reducing your need
for detailed modeling.

These three techniques are effectively enablers of
AMDD. Refactoring helps you to maintain a quality
design within your object schema over time and
supports detailed changes to your design that aren’t
captured within your design models. Similarly database
refactoring helps you to maintain a quality design
within your data schema, in many ways it could be
thought of as normalization after the fact. Both
techniques push evolutionary design decisions into the
hands of the people most qualified to make them – the
people actually building the system. AMDD and TDD
go hand-in-hand because they are both “think before
you code” techniques. AMMD provides a way to think
through big issues whereas TDD provides a way to
think through detailed issues.

Conclusion
Modeling is a skill that all developers must gain to be
effective. Agile Modeling (AM) defines a collection of
values, principles, and practices which describe how to
streamline your modeling and documentation efforts.
Modeling can easily become an effective and high-
value activity if you choose to make it so; unfortunately

many organizations choose to make it a bureaucratic
and documentation-centric activity which most
developers find intolerable.
The Agile Model Driven Development (AMDD)
process describes a approach for applying AM in
conjunction with agile implementation techniques such
as Test Driven Development (TDD), code refactoring,
and database refactoring. AMDD enables agile
developers to think through larger issues before they
dive down into the implementation details. AMDD is a
valuable technique to have in your intellectual toolbox.

Resources
1. Beck, K., and Cunningham, W. (1989). A

laboratory for teaching object-oriented thinking. In
Proceedings of OOPSLA’89, pp. 1–6.

2. Ambler, S.W. Agile Modeling: Effective Practices
for Extreme Programming and the Unified Process.
New York: John Wiley & Sons Publishing. 2002

3. Ambler, S.W. An Unofficial Profile for Data
Modeling Using the UML.
www.agiledata.org/essays/umlDataModelingProfile
.html

4. Beck, K. Extreme Programming Explained –
Embrace Change. Reading, MA: Addison Wesley
Longman, Inc. 2000

5. Palmer, S. R. & Felsing, J. M. A Practical Guide
to Feature-Driven Development. Upper Saddle
River, NJ: Prentice Hall PTR. 2002.

6. Kruchten, P. The Rational Unified Process 2nd
Edition: An Introduction. Reading, MA: Addison
Wesley Longman, Inc. 2000

7. Ambler, S.W., Nalbone, J, and Vizdos, M.J. The
Enterprise Unified Process: Extending the Rational
Unified Process. Upper Saddle River, NJ: Prentice
Hall PTR. 2005.

8. Cockburn, A. Agile Software Development.
Reading, MA: Addison Wesley Longman, Inc.
2002

9. Ambler, S.W. The Object Primer 3rd Edition: Agile
Model Driven Development with UML 2. New
York: Cambridge University Press, 2004.

10. Ambler, S. W. Agile Database Techniques:
Effective Strategies for the Agile Software
Developer. New York: Wiley. 2003.

11. Model Driven Architecture (MDA) Home Page.
www.omg.org/mda/

12. Fowler, M. Refactoring: Improving the Design of
Existing Code. Menlo Park, CA: Addison Wesley
Longman. 1999.

13. Astels, D.. Test Driven Development: A Practical
Guide. Upper Saddle River, NJ: Prentice Hall.
2003.

14. Beck, K.. Test Driven Development: By Example.
Boston, MA: Addison Wesley. 2003.

15. Ambler, S.W. Agile Model Driven Development is
Good Enough. IEEE Software, September/October
2003, 20(5), pp. 70-73.

Page 34 of 42

16. Ambler, S.W.. Inclusive Modeling.
www.agilemodeling.com/essays/inclusiveModeling
.htm. 2004.

17. Breen, P. Software Craftsmanship. Boston, MA:
Addison Wesley. 2002.

18. Guide for ISO/IEC 12207 (Software Life Cycle
Processes). International Standards Organization
(ISO), www.iso.org. 1998.

19. Ambler, S.W. The Elements of UML 2.0 Style.
New York: Cambridge University Press. 2005.

About the Author
Scott Ambler (www.ambysoft.com/scottAmbler.html):
is a Senior Consultant with Canada-based Ambysoft
Inc. a software services consulting firm that specializes
in software process mentoring and improvement. He is
founder and thought leader of the Agile Modeling (AM)
(www.agilemodeling.com), Agile Data (AD)
(www.agiledata.org), and Enterprise Unified Process
(EUP) (www.enterpriseunifiedprocess.com)
methodologies. He helps organizations adopt and tailor
these processes to meet their exact needs as well as
provides training and mentoring in these techniques.

Advertisment

http://www.objectiveviewmagazine.com/

Page 35 of 42

Combining Design Driven Testing with Test Driven Design

Doug Rosenberg and Matt
Stephens discuss how to
combine model driven design
with test driven design…

ICONIX Process is a minimalist, use-case driven object
modeling process that is well suited to agile Java
development. It uses a core subset of UML diagrams,
and provides a reliable method of getting from use cases
to source code in as few steps as possible. It’s described
in the book Agile Development with ICONIX Process
(more information can be found about the book here:
www.softwarereality.com/AgileDevelopment.jsp).

 Because the process uses a minimal set of steps, it’s
also well suited to agile development, and can be used
in tandem with test-driven development (TDD) to help
“plug the gaps” in the requirements.

The book describes the use case driven analysis and
design process in detail, with lots of examples using
UML, C# and Java. However, for this book excerpt, we
focus on how to combine unit testing with up-front
UML modeling, to produce a really rigorous software
design. The process begins with the use cases and UML
diagrams, then moves into Java source code via JUnit…

Test-Driven Development with
ICONIX Process
In Agile Development with ICONIX Process, we put
together an example system using “vanilla” test-driven
development (TDD). We then repeat the example using
a mixture of TDD and ICONIX modeling. In the
excerpt below, we show this aspect of agile ICONIX
development.

The premise behind TDD is that you write the unit tests
first, then write the code to make the tests pass. The
process of doing this in theory lets you design the code
as you write it. However, we prefer a more rigorous,
“higher-level” design approach, which we describe
here.

How Agile ICONIX Modeling and TDD
Fit Together
There’s a prevailing opinion in the agile world that
“formal” up-front design modeling and TDD are

mutually exclusive.
However, we’re going to
demonstrate that TDD can
in fact be particularly
effective with an up-front design method like ICONIX
Process.

ICONIX Process takes the design to a low level of
detail via sequence diagrams — one sequence diagram
for each use case. These diagrams are used to allocate
behaviors to the class diagrams. The code can then be
written quickly without much need for refactoring.
However, the coding stage is still not exactly a brainless
activity. The programmer (who, incidentally, should
also be actively involved in the design modeling stage)
still needs to give careful thought to the low-level
design of the code. This is an area to which TDD is
perfectly suited.

The “Vanilla” Example Repeated
Using ICONIX Modeling and TDD

The following serves as our list of requirements for this
initial release:

• Create a new customer.

• Create a hotel booking for a customer.

• Retrieve a customer (so that we can place the
booking).

• Place the booking.

As luck would have it, we can derive exactly one use
case from each of these requirements (making a total of
four use cases). For this example, we’ll focus on the
first use case, “Create a New Customer”.

Let’s start by creating a domain model that contains the
various elements we need to work with, as shown in
Figure 1. As you can see, it’s pretty minimal at this
stage. As we go through analysis, we discover new
objects to add to the domain model, and we possibly
also refine the objects currently there. Then, as the
design process kicks in, the domain model swiftly
evolves into one or more detailed class diagrams.

Page 36 of 42

Figure 1. Domain model for the hotel booking example

The objects shown in Figure 12-1 are derived simply by
reading through our four requirements and extracting all
the nouns. The relationships are similarly derived from
the requirements. “Create a hotel booking for a
customer,” for example, strongly suggests that there
needs to be a Customer object that contains Booking
objects. (In a real project, it might not be that simple—
defining the domain model can be a highly iterative
process involving discovery of objects through various
means, including in-depth conversations with the
customer, users, and other domain experts. Defining and
refining the domain model is also a continuous process
throughout the project’s life cycle.)

If some aspect of the domain model turns out to be
wrong, we change it as soon as we find out, but for
now, it gives us a solid enough foundation upon which
to write our use cases.

Here’s the use case for “Create a New Customer”:

• Basic Course: The system shows the Customer
Details page, with a few default parameters filled
in. The user enters the details and clicks the Create
button; the system validates that all the required
fields have been filled in; and the system validates
that the customer name is unique and then adds the
new Customer to the database. The system then
returns the user to the Customer List page.

• Alternative Course: Not all the required fields
were filled in. The system informs the user of this
and redisplays the Customer Details form with the
missing fields highlighted in red, so that the user
can fill them in.

• Alternative Course: A customer with the same
name already exists. The system informs the user
and gives them the option to edit their customer
details or cancel.

This use case probably has more user interface details
than you’re used to seeing in a use case. This is a
characteristic of “ICONIX-style” use cases: they’re
quite terse, but they are very closely tied to the domain
model, and to the classes that you’ll be designing from.

Next, we draw a robustness diagram – i.e. a picture
version of the use case (see Figure 2).

A robustness diagram shows conceptual relationships
between objects. Because it’s an “object drawing” of
the use case text, it occupies a curious space halfway
between analysis and design. Nevertheless, mastering
robustness analysis is the key to creating rigorous
designs from clear, unambiguous use cases.

The robustness diagram shows three types of object:

• Boundary objects (a circle with a vertical line at the
left) – these represent screens, JSP pages and so
forth

• Entities (a circle with a horizontal line at the
bottom) – these are the data objects (e.g. Customer,
Hotel Booking)

• Controllers (a circle with an arrow-head at the top)
– these represent actions that take place between
other objects (i.e. Controllers are the verbs)

(Note that in the book, we take the “Create a New
Customer” use case and robustness diagram through
several iterations, using the robustness diagram to
polish up and “disambiguate” the use case text. For
brevity we just show the finished version here).

Sequence Diagram for “Create a New
Customer”
Now that we’ve disambiguated our robustness diagram
(and therefore also our use case text), let’s move on to
the sequence diagram (see Figure 3).

Page 37 of 42

Figure 2. Robustness diagram for the Create a New Customer use case

Figure 3. Sequence diagram for the Create a New Customer use case

Page 38 of 42

More Design Feedback: Mixing It with
TDD

The next stage is where the ICONIX+TDD process
differs slightly from vanilla ICONIX Process.
Normally, we would now move on to the class diagram,
and add in the newly discovered classes and operations.
We could probably get a tool to do this part for us, but
sometimes the act of manually drawing the class
diagram from the sequence diagrams helps to identify
further design errors or ways to improve the design; it’s
implicitly yet another form of review.

We don’t want to lose the benefits of this part of the
process, so to incorporate TDD into the mix, we’ll write
the test skeletons as we’re drawing the class diagram. In
effect, TDD becomes another design review stage,
validating the design that we’ve modeled so far. We can
think of it as the last checkpoint before writing the code
(with the added benefit that we end up with an
automated test suite).

So, if you’re using a CASE tool, start by creating a new
class diagram (by far the best way to do this is to copy
the existing domain model into a new diagram). Then,
as you flesh out the diagram with attributes and
operations, simultaneously write test skeletons for the
same operations.

Here’s the important part: the tests are driven by
the controllers and written from the perspective of
the Boundary objects.

If there’s one thing that you should walk away from this
article with, then that’s definitely it! The controllers are
doing the processing — the grunt work — so they’re
the parts that most need to be tested (i.e., validated that
they are processing correctly). Restated: the controllers
represent the software behavior that takes place within
the use case, so they need to be tested. However, the
unit tests we’re writing are black-box tests (aka closed-
box tests)—that is, each test passes an input into a
controller and asserts that the output from the controller
is what was expected. We also want to be able to keep a
lid on the number of tests that get written; there’s little
point in writing hundreds of undirected, aimless tests,
hoping that we’re covering all of the failure modes that
the software will enter when it goes live. The Boundary
objects give a very good indication of the various states
that the software will enter, because the controllers are
only ever accessed by the Boundary objects. Therefore,
writing tests from the perspective of the Boundary
objects is a very good way of testing for all reasonable
permutations that the software may enter (including all
the alternative courses). Additionally, a good source of
individual test cases is the alternative courses in the use
cases. (In fact, we regard testing the alternative courses
as an essential way of making sure all the “rainy-day”
code is implemented.)

Okay, with that out of the way, let’s write a unit test. To
drive the tests from the Control objects and write them
from the perspective of the Boundary objects, simply
walk through each sequence diagram step by step, and
systematically write a test for each controller. Create a
test class for each controller and one or more test
methods for each operation being passed into the
controller from the Boundary object.

Looking at the sequence diagram in Figure 3, we should
start by creating a test class called
CustomerDetailsValidatorTest, with two test methods,
testCheckRequiredFields() and
testCustomerNameUnique():

package iconix;
import junit.framework.*;

public class CustomerDetailsValidatorTest extends
TestCase {

 public CustomerDetailsValidatorTest(String
 testName) {
 super(testName);
 }

 public static Test suite() {
 TestSuite suite = new TestSuite
 (CustomerDetailsValidatorTest.class);
 return suite;
 }

 public void testCheckRequiredFields() throws
 Exception {
 }

 public void testCustomerNameUnique() throws
 Exception {
 }
}

At this stage, we can also draw our new class diagram
(starting with the domain model as a base) and begin to
add in the details from the sequence diagram/unit test
(see Figure 4).

As you can see in Figure 4, we’ve filled in only the
details that we’ve identified so far using the diagrams
and unit tests. We’ll add more details as we identify
them, but we need to make sure that we don’t guess at
any details or make intuitive leaps and add details just
because it seems like a good idea to do so at the time.

TIP: Be ruthlessly systematic about the details you
add (and don’t add) to the design.

In the class diagram in Figure 4, we’ve indicated that
CustomerDetailsValidator is a <<control>> stereotype.
This isn’t essential for a class diagram, but it does help
to tag the control classes so that we can tell at a glance
which ones have (or require) unit tests.

Page 39 of 42

Next, we want to write the actual test methods.
Remember, these are being driven by the controllers,
but they are written from the perspective of the
Boundary objects and in a sense are directly validating
the design we’ve created using the sequence diagram,

before we get to the “real” coding stage. In the course of
writing the test methods, we may identify further
operations that might have been missed during sequence
diagramming.

Figure 4. Beginnings of the detailed class diagram

Our first stab at the testCheckRequiredFields() method
looks like this:

public void testCheckRequiredFields() throws
Exception {
 List fields = new ArrayList();
 Customer customer = new Customer (fields);
 boolean allFieldsPresent =
 customer.checkRequiredFields();
 assertTrue("All required fields should be present",
 allFieldsPresent);
}

Naturally enough, trying to compile this initially fails,
because we don’t yet have a CustomerDetailsValidator
class (let alone a checkRequiredFields() method). These
are easy enough to add, though:

public class CustomerDetailsValidator {
 public CustomerDetailsValidator (List fields) {
 }
 public boolean checkRequiredFields() {
 return false; // make the test fail initially.
 }
}

Let’s now compile and run the test. Understandably, we
get a failure, because checkRequiredFields() is
returning false (indicating that the fields didn’t contain
all the required fields):

CustomerDetailsValidatorTest
.F.
Time: 0.016
There was 1 failure:
1)
testCheckRequiredFields(CustomerDetailsValidator
Test)
junit.framework.AssertionFailedError:
All required fields should be present at
CustomerDetailsValidatorTest.testCheckRequiredFi
elds(
CustomerDetailsValidatorTest.java:21)
FAILURES!!!
Tests run: 2, Failures: 1, Errors: 0

However, where did this ArrayList of fields come from,
and what should it contain? In the
testCheckRequiredFields() method, we’ve created it as
a blank ArrayList, but it has spontaneously sprung into
existence—an instant warning sign that we must have

Page 40 of 42

skipped a design step. Checking back, this happened
because we didn’t properly address the question of what
the Customer fields are (and how they’re created) in the

sequence diagram (see Figure 3). Let’s hit the brakes
and sort that out right now (see Figure 5).

Figure 5. Revisiting the sequence diagram to add more detail

Revisiting the sequence diagram identified that we
really need a Map (a list of name/value pairs that can be
looked up individually by name) and not a sequential
List.

Now that we’ve averted that potential design mishap,
let’s get back to the CustomerDetailsValidator test. As
you may recall, the test was failing, so let’s add some
code to test for our required fields:

public void testCheckRequiredFields() throws
Exception {
 Map fields = new HashMap();
 fields.put("userName", "bob");
 fields.put("firstName", "Robert");
 fields.put("lastName", "Smith");
 Customer customer = new Customer(fields);
 boolean allFieldsPresent =
customer.checkRequiredFields();
 assertTrue("All required fields should be present",
 allFieldsPresent);
}

A quick run-through of this test shows that it’s still
failing (as we’d expect). So now let’s add something to
CustomerDetailsValidator to make the test pass:

public class CustomerDetailsValidator {
 private Map fields;

 public CustomerDetailsValidator (Map fields) {
 this.fields = fields;
 }

 public boolean checkRequiredFields() {
 return fields.containsKey("userName") &&

 fields.containsKey("firstName") &&
 fields.containsKey("lastName");
 }
}

Let’s now feed this through our voracious unit tester:

CustomerDetailsValidatorTest
..
Time: 0.016
OK (2 tests)

The tests passed!

Summing Up
Hopefully this article gave you a taster of what’s
involved in combining a code-centric, unit test-driven
design methodology (TDD) with a UML-based, use
case-driven methodology (ICONIX Process). In Agile
Development with ICONIX Process, we take this
example further, showing how to strengthen the tests
and the use cases by adding controllers for form
validation, and by writing unit tests for each of the
alternative courses (“rainy day scenarios”) in the use
cases.

Links:

Agile ICONIX Process:
http://www.softwarereality.com/AgileDevelopment.jsp
ICONIX Software Engineering (training and consulting):
http://www.iconixsw.com
Test Driven Development: http://ww.testdriven.com

Page 41 of 42

 Books to look out for …

Essential Skills for Agile Development

This book has an elegant yet highly effective minimalist style. Rather
than long theoretical discussion the book does what it does by example
- and there's plenty of example code given. See the article earlier in this
magazine. Overall the book covers many topics and issues related to
agile software development, including: keeping code fit; handling
inappropriate references; seperating database, UI and domain logic;
unit testing and acceptance testing amongst others.

The reason this book is to be recommended to developers, is that even
if you're not doing full on "agile" development, there's still plenty of
useful material in it. The lack of hype is also refreshing - the book
focuses on examples and shows good solutions. You should get it!

Agile and Iterative Development, A Manager’s Guide

Using statistically significant research and large-scale case
studies, noted methods expert Craig Larman presents the most
convincing case ever made for iterative development. Larman
offers a concise, information-packed summary of the key ideas
that drive all agile and iterative processes, with the details of four
noteworthy iterative methods: Scrum, XP, RUP, and Evo.

This book is a must if you need to get a grip on the spectrum of
agile development techniques out there.

The Enterprise Unified Process

The Rational Unified Process is a powerful tool for improving software
development -- but it doesn't go nearly far enough. Today's
development organizations need to extend RUP to cover the entire IT
lifecycle, including the cross-project and enterprise issues it largely
ignores.

The Enterprise Unified Process systematically identifies the business
and technical problems that RUP fails to address, and shows how EUP
fills those gaps. Using actual examples and case studies, the authors
introduce processes and disciplines for producing new software,
implementing strategic reuse, "sunsetting" obsolete code and systems,
managing software portfolios, and much more.

Books included in this section are selected on merit by the editor.

Page 42 of 42

advertisment

An Architectural Reference Model for Large Scale
Applications
a one day workshop

Introduction
This one day workshop explores an architectural reference model (ARM) applicable for large scale
object-oriented applications. As object-oriented application become larger, with ever more classes
and interfaces, the complexity of inter-class/interface dependencies increases – potentially
exponentially. This typically manifests itself in applications becoming increasingly brittle, making
change difficult and quality uncertain.

The ARM assists in managing complexity through the time honoured principle of of divide and
conquer. By using the ARM and its associated - and fairly easy to apply, set of rules – your
application will have a far greater coherency of structure, leading to:
• improved flexibility and increased ability to respond to customer requested change,
• greater clarity of responsibility – as to which code does what,
• improved code factoring – reducing duplication within the code,
• increased consistency in packaging rules,
• more manageable and well understood dependencies between packages,
• improved test coverage,
• increased likelyhood of achieving re-use,
• and, in general, greater overall application stability and quality

Contents
Part 1: Introduction
• ARM overview
• costs and benefits
• banking system worked example
• introductory exercises and group review

Part 2: The strata in detail – comparing and
contrasting
• Interface - initiates
• Application - serves
• Domain - represents
• Infrastructure – assists
• Platform – underpins
• Video stores worked example
• group exercises and discussion

Part 3: Advanced ARM-our (1)
• ARM and CCP/CRP

• ARM and centre of gravity (the “push it
down” rule)

• ARM and dependency injection
• ARM and automated testing
• ARM and domain decoupling
• ARM and sub-system structuring
• Email system worked example
• group exercises and discussion

Part 4: Advanced ARM-our (2)
• ARM and relational databases
• ARM and distributed systems
• ARM as a discussion tool
• ARM and product line software

development
• The agile package map
• Hotel reservation system worked example
• Group exercises and discussion

For further information email: info@ratio.co.uk

An online article based on the course material can be found at:

http://www.ftponline.com/ea/magazine/summer2005/features/mcollinscope

	Issue8

