
ObjectiveView

A Magazine for the Professional Software Developer

http://www.canvaz.com/gallery/585.htm

Page 1 of 50

New Kids on the
Block!

Features:

Ruby
Ruby on Rails
AspectJ
AJAX

Opinion:
Prefactor and be agile
Specs are bad
Abstraction
Goto considered harmful

Humour:

Glacial Development

web distribution partner

www.iconixsw.com

Tel: +1 310 4580092
Fax: +1 310 3963454

Email: umltraining@iconixsw.com

web distribution partner

www.softwarereality.com

published by

Software Development, Training and

Consultancy
www.ratio.co.uk/objectiveview.html for

back copies

web distribution partner

www.thoughtworks.com

web distribution partner

www.cpttm.org.mo

web distribution partner

www.ambysoft.com

web distribution partner

www.obtiva.com

web distribution partner

International Association of Software

Architects

www.iasahome.org

web distribution partner

Dodeca
T e c h n o l o g i e s

www.dodeca.co.uk

http://www.iconixsw.com/
http://www.ratio.co.uk/objectiveview.html

ObjectiveView

Page 2 of 50

CONTACTS

Editor

Mark Collins-Cope
mcc@ratio.co.uk

Editorial Board
 Scott Ambler
 Kevlin Henney

Free subscription

PDF by email – email to:
objective.view@ratio.co.uk
(with subject: subscribe)

Feedback/Comments/Article
Submission

info@ratio.co.uk

Circulation/Sponsorship Enquiries
info@ratio.co.uk

Authors may be contacted through the editor. All
questions or messages will be passed on.

CONTENTS

Introduction to Ruby - Amy Hoy

 5

Down on the Upside – Kevlin
Henney

12

Ruby on Rails – Obie Fernandez

14

Specs are Bad – Rebecca Wirfs-
Brock

27

Glacial Methodology – Scott Ambler

28

Introduction to AspectJ – Alex Ruiz

29

Goto Considered Harmful – Edsger
Dijsktra

39

Prefactor and be Agile – Ken Pugh

41

Ajax Analysis – Richard Vaughan

42

Books to look out for …

49

Have Your Say!
Join the ObjectiveView discussion and feedback group.

Simply visit:
groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView
email: objective.view@ratio.co.uk subject: subscribe

Distribute ObjectiveView
It’s easy. You link to ObjectiveView using our linkgif, and your logo will appear

on all copies of the magazine. Contact info@ratio.co.uk for more info.

mailto:mcc@ratio.co.uk
mailto:objective.view@ratio.co.uk
mailto:info@ratio.co.uk

ObjectiveView
visit www.ratio.co.uk for back issues.

Welcome to Issue 9

If you're a regular reader of
ObjectiveView, you'll know we
don't rave about things very
often. But for "Ruby on Rails"
we've decided to break that rule.
Having played with the Rails
environment, we can honestly
say that it lives up to its

reputation as a truly high-productivity web/database
development environment. The Ruby language
itself takes some credit - it's compact, neat and in
particular makes meta-programming (having code
generated automatically on the fly) a truly viable
option. The Rails framework itself takes full
advantage of Ruby's meta-programming facilities to
make the object/relational mapping a non-issue,
generating web based UIs easy, taking the tedium
out of issues such as validation, and enabling the
manipulation of relationships between underlying
tables (many to many, one to many, etc.) to be
natural and easy. Meta-programming is the future -
see the articles in this issue for more information.

It's also interesting to see how Ruby fairs against
one of the other topics we cover in this issue -
AspectJ. Aspect oriented programming has been
gaining a following for a while now - albeit it hasn't
hit the mainstream. Aspects deal with "cross-
cutting" concerns like security checking calls to
services in a service oriented architecture (to ensure
the calling code has the correct permissions to make

the call) - and Aspect/J certainly makes dealing
with this type of concern (without duplicating code
all over the place) much simpler.

But whereas with Java you need a new extended
language to do this, Ruby's meta-programming
features and the ability to extend a pre-existing
class give you this for free (well almost – you’ll
have to do a bit of meta-programming, and it won’t
be as transparent). For my money, Ruby is the
better option. But of course, not everyone will be
able to use Ruby in their work. So AspectJ is still
well worth a look. Aspects are a different way of
looking at software – so even if you’re not using
AspectJ – you can still learn a lot from looking at
the language.

The other major article in this issue covers AJAX.
AJAX effectively opens the door to sophisticated
and elegant direct manipulation user interfaces for
the web. And about time too. One of the frustrations
the web brought upon us (one we had to accept -
mind you - given the benefits) was that user
interface went back 20 years. Hopefully that is all
about to change!

It's an interesting time for programming technology.
It'll be even more interesting to see if AJAX,
Ruby/Rails and AspectJ really do hit the big time.

We can but hope!

Mark Collins-Cope
London, February 2006.

Page 3 of 50

 ObjectiveView

advertisment

X

Page 4 of 50

http://www.objectiveviewmagazine.com/

http://www.objectiveviewmagazine.com/

 ObjectiveView

Ruby’s a Gem

Amy Hoy with an amusing introduction the Ruby programming language…

Ah, Ruby. I'll skip the simpering
introduction where I talk about how
Ruby's the word on everyone's lips,
worshippers and naysayers alike. You
know this already, I know. But you may
not have had time to give Ruby a

thorough checking out, and that's a great reason to keep
reading.

Help, What Am I Doing In This
Nutshell?!
If I had to pick one word to describe Ruby—to sum it up in
the shell of some kind of nut, as you might say—that word
would have to be: elegance. Elegance, in this case, meaning as
simple as it should be—and no simpler.

On the other hand, if "elegance," was unavailable as a choice
for some reason, I'd probably pick "happiness." Ruby brings
out the smiles, and it may just remind you of your salad days,
when programming was fun and you enjoyed the tingly feel of
photosynthesis in your leaves.

Contraindicators
You might be one of those few who have an unpleasant
visceral reaction to Ruby. It's been known to happen in a small
percentage of test subjects. Don't worry—even though you
might get teased in the playground, you're reaction is
completely within acceptable norms. Programming languages
are, above all, an aesthetic choice.

Vitals—Stat!
Ruby's a great kid and it's got a lot going for it. For one, it's a
very object-oriented programming language. Everything's an
object, and there are no primitives.

Witness:

5.times { puts "Mice! " }

And:

"Elephants Like Peanuts".length

On the other hand, you don't have to encapsulate everything
you write in classes—you're free to write procedural code if
you so desire. Ruby classes may seem a bit strange at first, but
we'll get to that later.

Feature Fantastic
Ruby also has a lot of very powerful features you've probably
come to associate with "enterprise-class" development and
typing lots and lots of extra characters, including operator
overloading, a mature inheritance model (called mixins), and
more.

Are You My Mommy?
Ruby descends from a dazzling array of languages, with
names you might recognize: Smalltalk, Perl, and even Ada. It
has such high-order programming features as blocks and
closures, and so is an instant darling of folks who love the
power of Lisp and yet find themselves violently allergic to
anything with that much punctuation.

Ruby's also made to be readable, as in
English:
Child.open('present') unless Child.bad?

You might recognize this as a Perlism. You would be right.

Zen is In
Ruby's daddy, Matz (Yukihiro Matsumoto) set out to "make
programmers happy." Ruby made its first debut in 1995, and
since then, Matz has repeatedly propounded the needs of
humans over the needs of computers when it comes to
language design. After all, the computers don't really care
what the language looks like, and more processor power is
easier to come by than joy.

Things in Ruby tend to work the way you'd think they would
if you inhabited a sane, well-designed universe. Of course,
you may not have inhabited such an environment till now, and
may need to be re-educated to unlearn bad habits picked up
elsewhere — cough — before things start just making sense.

This results in Ruby being a very simple-looking language.
Perhaps even deceptively simple, as Ruby's arguably more
powerful than a number of other popular languages (see Paul
Graham's arguments in his book Hackers and Painters on
what makes one language more powerful than another). While
anyone can make a language look dense for an obfuscated
<insert-language-here> contest, typically Ruby looks like no
such thing.

Dive In—You Won't Break Your Neck
Learn by doing, I always say. Ruby's infamous crazy
philosopher-king Why the Lucky Stiff clearly feels the same
and, in his infinite insanity, has provided a spiffy web-based
Ruby interpreter called TryRuby (http://tryruby.hobix.com/).
He bills it as the cure for all ills, but I suggest it be used for
trying out Ruby with no installation required.

Alternatively, if you are so inclined, open up your operating
system's command-line interface (if it has one) and type “irb”
to see if you already have Ruby installed. IRb stands for
Interactive Ruby.

Page 5 of 50

 ObjectiveView

A Little Experimentation Never Hurt Anyone
Load up IRb or TryRuby and try these lines. Lines you type
begin with >>, while responses from the Ruby interpreters
begin with =>.

First, let's test your (and Ruby's) basic math skills:

>> 6 * 7
=> 42

Voila! You don't have to use any primitives to perform these
elementary math operations. But just like in Java, those
operators—and the others as well—are class methods which
can be overloaded.

Now, something a little less like third grade
math class:

>> 42.zero?
=> false
>> myvar = 0
=> 0
>> myvar.zero?
=> true

In addition to addition, the above code demonstrates that Ruby
can answer direct questions! When you see a ? tacked on the
end of a method, you can assume it will return a boolean
value. This human-friendly convention makes code clearer
with just a single character. Ruby's full of sweet little touches
like this.

Now we leave numbers behind and enter the wild world of
letters.

>> "Hi, I'm a String!".reverse
=> "!gnirtS a m'I ,iH"
>> "Monkeys! " * 3
=> "Monkeys! Monkeys! Monkeys! "
>> mystring = "cheese"
=> "cheese"
>> mystring[1..3]
=> "hee"

Ruby's String class is chock full of useful—or at least
amusing—methods like the ones above. But you don't have to
create a container variable to use class methods on an object.
You need no intermediary to transform dairy product into pure
glee:

>> "cheese"[1..3]
=> "hee"

Of course, not all methods available on one data type are
available for another. When in doubt or in error, you can
convert between them to get the result you want.

When you try to use a nonexistent method on a class, you'll
get an error that looks like this:

>> 1337.reverse
NameError: undefined local variable or method `l337' for main:Object
 from (irb):12

 from (null):0

Whoops! That's a String method, but we tried to call it on a
Fixnum. Bad mojo. Let's try that again:

>> 1337.to_s.reverse
=> "7331"

And, as you can see, you're able to stack up method calls like
so many... precariously balanced things which are stackable.

>> (1..10).to_a
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

This converts a Range object of (1..10) to an Array using the
method to_a, Range#to_a comes from the mixin Enumerable,
actually. Phew!

Basic Types
Your basic data types in Ruby are Numeric (subtypes include
Fixnum, Integer, and Float), String, Array, Hash, Object,
Symbol, Range, and Regexp. Ruby doesn't require you to use
primitives when manipulating data of these types—if it looks
like an integer, it's probably an integer; if it looks like a string,
it's probably a string.

Which Type Are You?
And now, back to that idea of Ruby being brain-friendly. If
you were assuming a sensible universe, how would you
determine what type a given object was?

>> mysterytype = "hello"
>> mysterytype.class
=> String
>> (1..2).class
=> Range

You have to admit, it does make sense.

If you want to create an object which is of a specific type, and
Ruby isn't inclined to do what you want, you can create it
explicitly just like you create any other object from a class:

>> givemeastring = String.new("42")
=> "42"

Duck Typing
Another one of Ruby's vaunted features is its duck typing —
it's not a statically typed language, far from it. Much like your
social status in high school, an object's type (class) merely
informs its very beginnings. Class is really not nearly as
important as what an object can do, once it's out in the Real
World.

If it looks like a duck, and quacks like a duck, we have at least to consider
the possibility that we have a small aquatic bird of the family anatidae on
our hands.

— Dirk Gently (as written by Douglas Adams) of Dirk Gently's Holistic
Detective Agency

Page 6 of 50

 ObjectiveView

The essentials of duck typing can be boiled down to this: If
you call a method, or reach for some capability, and the object
in question has it, great—look no further, who cares what type
it is! When put this way, it sounds less like a major
programming theory thingamabobber and more like common
sense, but there you have it.

Even so, duck typing can throw folks who have more static-
typed language experience when, for example, an Array object
responds to methods generally associated with Lists, Stacks,
and Queues. If this happens to you, just relax, take a deep
breath, and remember that that which does not kill you will
only make you stronger. And I promise you, you won't be the
first victim of terminal Ruby Exposure™.

Modules & Mixins
Ruby couldn't be outfitted with so many interesting features
and then fall through on something as major as its inheritance
paradigm. (Yeah, I said it — paradigm!) It'd be... well, a
shameful lack of imagination!

And so, in Ruby, classes have only single inheritance—but
you can get all the benefits (and only a few of the costs) of
multiple inheritance through mixins. Mixins are a way of
including a module of modular (get it?) code in one or more
classes. Modules are very similar to classes, but are meant for
extending classes, and creating namespaces, rather than
standing on their own.

For example, the Enumerable module is mixed-in to both
Array and Hash. It facilitates fun functions like each (for
looping), map (for doing an array-walk kind of thing), sort
(for sorting, natch), and so on. The best part is, the client code
usage for all the methods in Enumerable is the same for both
Array and Hash, so you just have to learn them the once and
you're golden.

But mixins can be complex creatures, if they need be. The
Enumerable module is a great example of this, because while
the code for the module itself is fixed, it accomodates two
rather different data types. How does it pull this off? Simple:
Enumerable relies on the implementing class (Array, Hash) to
provide its own each function to make everything work. It can
delegate, while still maintaining the namespace. It's very
purty.

Healthy eating?
Here’s some example code using a mixin:

module Digestion
 def eat(*args)
 args.each { |food|
 #look for foods the including class cannot eat -- instance variable
 puts "#{food} is delicious!" unless self.inedible_stuff.include?(food)
 }
 end
end

class Dog
 include Digestion
 attr :inedible_stuff
 def initialize
 #dogs can't eat this stuff
 @inedible_stuff = ['rocks','rubber','chocolate','people']
 end

end

class MonsterUnderMyBed
 include Digestion
 attr :inedible_stuff
 def initialize
 #monsters can eat anything
 @inedible_stuff = []
 end
end

examples:
@inedible_stuff accessible from including class (dogs can't eat rocks)

irb(main):025:0> Dog.new.eat('rocks','dog food','stuff from the trash
can')
dog food is delicious!
stuff from the trash can is delicious!
=> ["rocks", "dog food", "stuff from the trash can"]

irb(main):028:0> MonsterUnderMyBed.new.eat('your sock','your
foot','your thigh')your sock is delicious!
your foot is delicious!
your thigh is delicious!
=> ["your sock", "your foot", "your thigh"]

Fancier Stuff
Ruby has blocks, which let you pass in segments of code as an
argument to some functions. If you've ever dallied with Lisp,
you'll recognize block as another word for closure. For
example, a simple block is used in this code, which uses the
each method described in the previous section:

>> ['monkey','cheese','pants'].each { |thing| puts "I put #{thing} on
my head!" }
I put monkey on my head!
I put cheese on my head!
I put pants on my head!
=> ["monkey", "cheese", "pants"]

Here's how this works: When somebody wrote the each
method, he used the yield statement, which tells Ruby to
execute any code supplied in a block. In this case, the
programmer used yield to put an object in local scope for the
block—the object in this case being the array element in
question.

You too can use yield. It can simply execute code in the block,
or you can use it to pass around data as each does. And if yield
is supplying variables, you access them in the block by giving
them names in pipes, one for each object, separated by
commas.

Here's a simple example of how to use yield in a method of
your own:

>> def using_yield
.. number = 2;
.. yield('yeehaw!', number)
.. end
=> nil

Now that the method is written, give it a call. As you can see,
yield is yielding two different variables, so make sure to catch
them both in the block:

>> using_yield { |word,num| puts "#{word} -- #{num} times!" }
yeehaw! -- 2 times!

Page 7 of 50

=> nil

 ObjectiveView

Neat, huh? This is how easy Ruby makes higher-order
programming. (The console still returns nil in addition to the
output because using_yield() does not in fact return anything.)

An Object Lesson
Classes in Ruby can be an interesting mix of straight-up code
and other code wrapped in methods.

Here's a sample class to get you started:

class Junk
 attr_reader :socks, :glass, :book

 def initialize
 @socks, @glass, @book = 'floor', 'table', 'under the chair'
 @mappings = {'one' => 'socks', 'two' => 'glass', 'three' => 'book'}
 end

 def clean!
 @socks = @glass = @book = 'put away'
 end

 ['one','two','three'].each do |name|
 define_method(name) do
 "The #{@mappings[name]} is " + self.send(@mappings[name])
 end
 end
end

If you're feeling so inclined, you can use the do..end keywords
instead of curly braces when using blocks, as I did in this
example.

The section at the end ([‘one’, ‘two’, ‘three’] …]) is an
example of meta-programming in Ruby. This code is the
equivalent of writing:

def one
 "The #{@mappings[‘one’]} is "+ self.send(@mappings[‘one’])
end

def two
 "The #{@mappings[‘two’]} is "+ self.send(@mappings[‘two’])
end

def three
 "The #{@mappings[‘three’]} is"+self.send(@mappings[‘three’])
end

[editor’s note: to see meta-programming being put to very
effective use, see the use of macros like “validate_length_of”
in the Ruby on Rails later]

Paste this code into your TryRuby console and then give it a
spin:

>> stuff = Junk.new
=> #<Junk:0x224234 @socks="floor", @mappings={"three"=>"book",
"two"=>"glass", "one"=>"socks"}, @book="under the chair",
@glass="table">

That's certainly an ugly mishmash, but somewhat informative
nonetheless, with the new object's class name, ID, and all the
instance variables. Now, let's try out that dynamic method
magic:

>> stuff.three
=> "The book is under the chair"

Crazy! And what's this do?

>> stuff.clean!
=> ["put away", "put away", "put away"]

I've never felt so excited about cleaning! That's another
Rubyism for you: a method ending in a ! will typically alter
the object itself or otherwise do something that might be
destructive or unexpected. Ruby programmers believe in
putting punctuation to good use. (Remember, kids, this is a
convention—not a rule.)

So, we modified the object. Where's the book now?

>> stuff.three
=> "The book is put away"

Readin' & Writin' in One Line (Each)
You may have noticed that lone line at the top of the class
which begins with attr_reader. That's a Ruby method to
automatically generate accessors for class and instance
variables. If you want write access as well, do up a line with
attr_writer, too. You use symbols (they're a whole 'nother
article) to denote the variables you want accessible. Use the
format :variablename.

Methods to the Madness
This simple class has two regular methods (initialize is what
you call the constructor), and some procedural code which
actually defines new methods on the fly. A simple loop
through an array creates three methods which would otherwise
involve lots of duplicated lines—methods called one, two, and
three, which spit out info corresponding to their mapped
instance variables.

The define_method method will create a new method in the
current context (e.g., our class); it takes a single argument, the
name for the new method, and then in the block you supply
what the contents of the method would be. If the method takes
arguments, you put them in the block in |pipes|, just like you
do for blocks elsewhere.

While this particular code does isn't particularly interesting
because of its extreme simplicity (also, it's useless), it
becomes quite intriguing when you consider that you can have
any number of behaviors trigger method generation.

Page 8 of 50

You may have thought I'd make it through the whole article
without mentioning Ruby on Rails, but I hope you didn't make
any bets. Ruby on Rails is one project that uses dynamic
method creation to great effect, by catching exceptions thrown
for missing constants and then making new methods as
necessary. This is what allows you to use such as-yet-non-
existent methods as Model.find_by_column1_and_column2.
Instead of spending the startup time creating these kinds of
goodies, it waits until they're needed. Code creation, on
demand!

 ObjectiveView

Message in a Parenthesis
Near the end of our little Junk class, there's the little bit of
code self.send(@mappings[name]). Conceptually, it's a
surprisingly dense snippet, especially if you don't already
know Ruby. But explaining those dense concepts—why, that's
what I'm here for!

Ruby's got a message-based system for interacting with
objects. If you want to access a data member or method of a
class, you can use the send method which belongs to the base
Object class (which everything subsequently inherits).

And the reason this works here is because when you append a
variable name to the end of a Ruby object using the dot
notation, you're actually calling a function—an accessor
method. So you can use the same method, send, to access
methods and variables—because in reality, they're the same.

One Last Trick
One of my favorite Ruby features is open classes. You can
redefine a class anywhere, and instead of getting angry
messages about how a class is already defined, you can modify
it. (but note: you will get a warning you put the earlier code
and the new code in a text file and run them with Ruby's
warnings enabled).

class Junk
 def clean!
 @socks, @glass, @book = ['donated']*3
 end
end

Pop this little extension into your console and try stuff.clean!
again. Get rid of that clutter... all the items will now report
themselves as being donated. It's very freeing, you know.

Caveat Coder: Like “the force”, open classes can be used for
good or evil. Or programming practices so suspect they take
on the patina of evil, anyway. Use “the force” for good and
Ruby will treat you right.

So Long, Farewell...
Our time together is coming to an end! I hope your interest is
tickled, or better yet piqued, and you're excited to pursue
Ruby further. I promise you, you won't regret it. Except
maybe when you have to use other languages. If you are so
inclined towards further Ruby scholarship, here are some great
resources for you to contemplate:

Programming Ruby v2 (Pickaxe), http://www.pragprog.com/

Why's Poignant Guide to Ruby, http://poignantguide.net/ruby/

Ruby Idioms, http://renaud.waldura.com/doc/ruby/idioms.shtml

Unofficial Ruby Style Guide,
http://www.caliban.org/ruby/rubyguide.shtml

Things that Newcomers to Ruby Should Know,
http://www.glue.umd.edu/~billtj/ruby.html

And of course, please feel free to stop by my site ((24)Slash7,
http://www.slash7.com) and leave comments or drop me an
email. Til then, happy Rubying!

Amy Hoy is a self-proclaimed geek girl who writes about
Rails and interface design at http://www.slash7.com. She works
full time as developer and designer for OmniTI, Inc in
Columbia, MD.

Page 9 of 50

advertisment

international association of software architects

The IASA was created by architects for architects to solve the major problems facing IT architects
today. Our resources are scarce: Architects have very few resources to workwith. It is often very

difficult to find the materials we need to do ourjobs.It is difficult to judge quality: Very few people
agree on thefundamental components of architecture or what it takes to become aqualified architect.

Our experience isn't portable: Every employer defines and uses

architecture differently. Lack of community: There is no way to quickly find peers of our own
calibre to discuss the issues which drive us.

Joining the IASA is very simple. You can register at your local chapter

or on the IASA website at www.IASAhome.org.

http://www.pragprog.com/
http://www.slash7.com/
http://www.iasahome.org/

 ObjectiveView

advertisment

Training in Ruby and Ruby on Rails
5 day hands on workshop (RAT 801)

You’ve heard the hype, now experience the reality!

Ruby on Rails really is the high-productivity web-application development environment you’ve heard about. In this five day
course, you’ll be taken through the basics of Ruby, before moving on to developing a real web application using Ruby on
Rails. You’ll be amazed how much you’ll be able to achieve!

Pre-requisites:
A good knowledge of at least one object-oriented programming language, including the use of OO design techniques. Some
experience of web development.

At the end of this course, you will be able to:
• Develop programs using the Ruby programming language
• Fully understand the structure of a Rails application
• Interface with relational databases using Rails’ ActiveRecord module
• Develop web based UIs using Rails’ ActionView templates and eRuby (embedded Ruby)
• Control applications using Rails’ ActionController classes
• Undertake test-driven development using Rails
• Be able to undertake productive real-world development using Rails

Syllabus

Day 1:
• introduction
• names, methods and classes
• modules
• arrays and hashes
• control structures
• regular expressions
• hands on worked examples

Day 2:
• blocks and iterators
• exceptions
• marshalling objects
• rails directory structure
• rails configuration
• tables, classes, primary and foreign keys
• CRUD
• relationships (1-1, *-1, etc.) between tables

and inhertance
• hands on worked examples

Day 3:
• one to one relationshiops
• one to many relationships
• page routing
• controllers
• automated functional testing
• hands on worked examples

Day 4:
• action methods
• sessions and cookies
• filters and verification
• redirecting
• web pages using action views
• rhtml templates (embedded ruby)
• hands on worked examples

Day 5:
• helpers and linking to pages
• pagination
• sending / receiving email with action

mailer
• introduction to web services with Ruby
• introduction to Ajax with Ruby
• hands on worked examples

For more information Email: info@ratio.co.uk or Call: +44 (0) 208 579 7900

Page 10 of 50

x

mailto:info@ratio.co.uk

 ObjectiveView

advertisment

Page 11 of 50

 ObjectiveView

Opinion ♦ Abstraction - Down on the Upside ♦ Kevlin Henney ♦ Opinion

When those involved in software development are sometimes accused of not
living in the real world, there may actually be a case to answer. There are
many things about software and its development that appear to be the wrong
way around or the wrong way up…

… Take, for example, the case of the
common tree. We have hierarchies for

directories, for method calls and for class inheritance. We
refer to these as trees. And where is the root? Highly visible
and at the top. The leaves proliferate at the bottom, often
obscured and hidden from immediate view.

Like the classic experiment where subjects are asked to where
prism glasses that invert their view of the world, we adjust.
What used to appear upside down now appears normal. We
cease to notice the difference. In the case of trees, this is not
really a problem: the properties of the abstraction are more
useful to us than perfect fidelity against the metaphor. The
inversion is simple enough not to be confusing and it is rarely
misleading.

Which leads us neatly to the concept of abstraction and the
way that it is often used. This flipped view of the world is not
always so free of problems. Consider first of all what
abstraction is: the act of omitting or taking away. This is an
incredibly useful tool: it allows us to consider problems,
solutions and models of problems and solutions without
becoming lost in unnecessary detail. Different abstractions
take different points of view: they omit certain kinds of detail
in order to emphasise others. In this sense the practice of
abstraction is intrinsically neither good nor bad; it is just more
or less useful. A good abstraction is one that allows us to
develop a piece of software more effectively; a poor
abstraction is one that misleads us by omitting or including the
wrong kind of detail.

Abstraction is a form of economy that at best supports clarity
and focus and at worst can be confusing and misleading, so we
can speak of quality of abstraction.

Often it is not so much a property of the abstraction as its
inappropriate application that can lead us astray: using a
crowded class diagram beset with operation and attribute
minutiae where a sketched package diagram would have been
more useful; using a programming language designed for
science and engineering to do systems programming; using the
London Underground map as a guide to London's geography.

So, what is so upside down about abstraction? In constructing
a system we often stack different abstractions on one another
as appropriate, leading to a layering of abstractions. The issue
arises when we shift from speaking about "layers of
abstractions" to "levels of abstraction". These two expressions
are not synonymous and they have quite different
implications. The latter implies that there is an intrinsic
ordering to abstraction, which in one sense is true: one
perspective leaves more out than another perspective is more
abstract. It might be better to refer to this as "degrees of
abstraction". One other aspect that might be ordered is
granularity. Often when people speak of "levels of
abstraction" they are actually referring to granularity of
abstraction.

However, one of the most common tendencies is to equate
"higher level" with "better" and "lower level" with "worse",
which is where the inverted view of the world becomes
noticeable. People often speak of domain-specific languages
or analysis models as higher-level abstractions that are closer
to the domain of the users than lower-level abstractions, such
as bits and bytes, and so therefore better for working closely
with users. The stated goal is that we should be thinking more
in terms of the problem domain - high level - than the solution
domain - low level. Wait a minute. If this is the goal, then it's
an own goal: the terminology is the wrong way up and reveals
an ingrained prejudice. What is it that is being left out?
Machine-level details. Techies might never question this but,
from the point of view of users, the world in which they carry
out their business is significantly more concrete than the
abstract realm of software.

The deeper you go into the software the less real and more
abstract things become. The real world (or problem domain, if
you want to be precise) is what is gradually omitted. We need
to be more careful in our terminology: abstraction is not so
much a question of altitude as a matter of perspective and
proximity.

Kevlin Henney is an independent consultant and trainer based
in the UK. He specialises in programming languages and
techniques, design and development process.

Page 12 of 50

Have Your Say!
Join the ObjectiveView discussion and feedback group.

Simply visit:
groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView

email: objective.view@ratio.co.uk subject: subscribe

mailto:objective.view@ratio.co.uk

 ObjectiveView

advertisment

Page 13 of 50

 ObjectiveView

Ruby on Rails

David Heinemeier Hansson - the primary author of Ruby on Rails - loves to
describe his wildly successful framework as an example of opinionated
software, which basically means: software written as a faithful reflection of
the author’s opinions and desires. Obie Fernandez explains…

Here is a brief list of opinions that I see expressed clearly in
Rails:
• Programming should be agile too
• Frameworks should be extracted from working

applications
• Developing web applications should be fun and move

rapidly
• Declarative aspects of code should follow logical

conventions instead of requiring configuration
• Application developers should concentrate on delivering

business value
• Reuse of application-level components is an overrated

goal if your framework is powerful and productive
enough

Agile and pragmatic programming principles dominate the
philosophy and design of Rails, but perhaps most importantly,
the authors of Rails have deep experience writing webapps.
That experience shines through loud and clear in the design of
the framework and the APIs.

I’ve been evangelizing Rails and working with Ruby
professionally for close to a year. The best way to teach
someone Rails and get them excited is to spend a little time
pair programming in Rails with them, so they can really
experience what it’s all about. I’ll try to simulate that
experience as closely as possible while authoring a simple
web application. I encourage you to setup Rails on your own
computer and follow along.

Be advised that you’ll need the following software installed:
• Ruby 1.8.2 (or higher)
• Rails 1.0
• SQLite3

I strongly recommend that Windows and Mac users new to
Ruby look into the InstantRails and Locomotive single-
download Rails installers, respectively. These simplify getting
started with Rails tremendously.
Having problems getting your Rails installation to work
correctly? Given all the online attention that Rails has gotten
in the last six months, hit up Google for answers on resolving
any problems you run into. I guarantee you that someone else
has already figured out the solution and written about it.

An Example Application
For the example I picked a feature common to the vast
majority of web applications out there: user authentication
with an encryptedpassword. We’ll need to write a User class
which supports encrypted passwords and a login screen.

Getting Started
The requirements sound pretty easy, but since this is the first
task of this project, we have some work ahead of us before we
can start coding application logic. How much work exactly?

Traditionally, one of the hardest parts of kicking off a brand
new project from scratch is deciding on directories to create
and figuring out what parts of the application go where. Back
when I was a junior programmer I’d typically keep a
collection of codebases which I felt were structured well, just
so that I could find one to clone for new projects whenever
needed. Even that can be problematic though, depending on
how closely the older project and new one match in terms of
size and purpose.

Rails does a brilliant job of getting you past that first crucial
obstacle of bootstrapping your application so you can get
started with application development right away. Simply type
rails <appname> at the command line. Throughout the rest of
the article, I’ll refer back to parts of the following list of
directories and files and explain their purpose. In a burst of
non-creativity, I’ve named my example app ‘example’…

C:\workspace>rails example
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create lib

 [snip!! … about 30 lines cut out here]

 create public/javascripts
 create public/javascripts/prototype.js
 create public/javascripts/effects.js
 create public/javascripts/dragdrop.js
 create public/javascripts/controls.js
 create public/stylesheets
 create public/dispatch.fcgi
 create public/index.html
 create public/favicon.ico
 create public/robots.txt
 create doc/README_FOR_APP

That’s a lot of files! I encourage you to take a moment and
mount the example directory in your favorite editor or IDE.
Browse through the files created – most of them are named in
a somewhat self-explanatory way and contain easy to
understand Ruby code.

Check out the script directory. A lot of helpful scripts were
created for you in there, among them one that you will be
using all the time: script/server. Try running it now.
(Windows users type ‘ruby script\server.)

Page 14 of 50

 ObjectiveView

advertisment

Page 15 of 50

 ObjectiveView

C:\workspace\example>ruby script\server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options
[2006-01-26 20:37:40] INFO WEBrick 1.3.1
[2006-01-26 20:37:40] INFO ruby 1.8.2 (2004-12-25) [i386-mswin32]
[2006-01-26 20:37:40] INFO WEBrick::HTTPServer#start: pid=1432 port=3000

Congrats! You’ve just fired up your first Rails application.
Webrick is a simple HTTP server that is bundled with Ruby
and it’s the web server we use to test our application locally.
Unless your installation is messed up somehow, you should be
able to open up your browser and point it to
http://localhost:3000 to see an introductory screen.

Database Configuration
The next step after bootstrapping your new Rails application is
always to setup your database configuration. The
database.yml file in the config directory has defaults in it that
you modify to meet your needs. For our example application,
blow away the provided defaults, and add the parameters
necessary to run with SQLite3 file-based database instances.

SQLite version 3.x
gem install sqlite3-ruby

development:
 adapter: sqlite3
 database: db/development.sqlite3

test:
 adapter: sqlite3
 database: db/test.sqlite3

production:
 adapter: sqlite3
 database: db/production.sqlite3

In case you didn’t guess it yourself, the format of this file is
YAML (which stands for Yet Another Markup Language) and
as you can see by how concise it is, YML won’t give you
nearly as much carpal-tunnel syndrome as it’s much more
popular older cousin XML. Why does Rails use YML instead
of XML? The main reason is that YML is less verbose and
easier to read than XML. It’s also very well-supported in
Ruby and you can serialize Ruby objects to YAML very
easily.

Rails Modes (Development, Test and
Production)
This is as good a time as any to mention that Rails has three
modes of operation. The two most Rails developers will
become most familiar with are development and test modes.
During development, your Rails web server will use the
development database instance and, as you might guess, the
test database instance is used when running automated tests.
In development mode, Rails reloads modified model and
controller code with each request, which means you hardly
ever need to restart your server to see changes reflected – just
hit ‘reload’ on your browser and enjoy the fruits of your labor.
There are a few exceptions though. One is the database.yml

file that we just wrote and another is the routes.rb file that
tells Rails how URLs are map to controller code.

HTTP Request Handling
Rails follows the Model View Controller (MVC) pattern for
web applications popularized by web frameworks such as
Struts. Describing the principles behind MVC is outside the
scope of this article.
Rather than forcing the developer to maintain verbose and
complicated configuration files defining explicit URL
Controller mappings, Rails routes incoming HTTP requests by
convention, according to the rules established in routes.rb.
Requests are routed according to rules and handed off to
public action methods on controller classes.

config/routes.rb

For our example application, I’ve modified the default
routes.rb slightly to map the root URL to a login controller
that we will write a little later on in the article when we
discuss the ActionController API in depth.

ActionController::Routing::Routes.draw do |map|
 # Add your own custom routes here.
 # The priority is based upon order of creation:
 # first created -> highest priority.
 # Here's a sample route:
 # map.connect 'products/:id',
 # :controller => 'catalog', :action => 'view'
 # Note you can assign values other than :controller
 # and :action
 # Map root URL to the index action of the login
 # controller
 map.connect '', :controller => 'login',
 :action => 'index'
 # Install the default route as the lowest priority.
 map.connect ':controller/:action/:id'
end

It is typical to define a URL root mapping for your
application, but most simple Rails applications will rely on the
default, lowest priority route. Now that we’ve edited the
database and routes files we are done with configuration and
we can start coding our application. If your Rails server is still
running, hit Ctrl-C to shut it down and restart it again. Now if
you access http://localhost:3000 again you will get an error
screen along the lines of ‘Controller not found’.

Application Code
Let’s take a look at the first directories that were created
during bootstrapping. They are where most of our application
codebase will reside, and as you can tell from their names,
they reflect the MVC architecture of Rails that we were just
discussing.

Page 16 of 50

http://localhost:3000/
http://localhost:3000/

 ObjectiveView

app/controllers
app/helpers
app/models
app/views/layouts
lib

While we’re at it, I’ll mention the other application code
directories. The helpers directory contains Ruby modules
(a.k.a mixins) that Rails auto-magically mixes into your view
templates and are convenient locations for commonly used
template logic. Finally, the lib directory is home for code that
doesn’t belong to any particular model or controller.

So, let’s write the model for our example application. Many
web applications have the concept of a User that can login to
access protected resources. Rails applications are typically
designed in somewhat of a bottom-up fashion and we’ll start
our application development by creating a database schema
with a user table.

The ActiveRecord Migrations API simplifies DDL operations
between versions of your application and has a generator for
creating new blank migrations classes. To invoke it, type the
following at your command prompt.

C:\workspace\example>ruby script\generate migration create_users_table
 create db/migrate
 create db/migrate/001_create_users_table.rb

Pop open the newly created file and you should see two empty
class method declarations up and down.

class CreateUsersTable < ActiveRecord::Migration
 def self.up
 end

 def self.down
 end
end

The documentation for the Migrations API is located at:

http://api.rubyonrails.com/classes/ActiveRecord/Migration.html

Using the API I’ll describe my users table. Notice how Rails
makes use of Ruby blocks (closures). Beneath the covers the
create_table method issues a CREATE TABLE command to
the database, but it also yields a table variable to the block
provided. This style of programming is a common Ruby
idiom.

class CreateUsersTable < ActiveRecord::Migration
 def self.up
 create_table "users" do |table|
 table.column "login", :string, :limit => 40
 table.column "created_at", :datetime
 table.column "updated_at", :datetime
 end
 end

 def self.down
 # It wouldn’t make sense to put anything here
 end
end

When you’re ready to apply the changes described in your
migration file, you simply run the following at your command
prompt:

C:\workspace\example>rake migrate
(in C:/workspace/example)

Introducing Rake

Rake is Ruby’s build tool, comparable to Unix’s make by
merit of being dependency-based. Martin Fowler
recently wrote a great introduction to Rake..
(http://www.martinfowler.com/articles/rake.html) Don’t worry
about similarities to make, Rakefiles are nowhere near as
difficult to understand and maintain as makefiles. I’m sure
Java programmers will find Rake somewhat similar in use to
Apache Ant. When we bootstrapped our example application,
one of the files generated for us was a Rakefile. Let’s take a
peek at the other tasks included…

C:\workspace\example>rake –T
(in C:/workspace/example)

Page 17 of 50

rake add_new_scripts # Add new scripts to the application script/ directory
rake apidoc # Build the apidoc HTML Files
rake appdoc # Build the appdoc HTML Files
rake clear_logs # Clears all *.log files in log/
rake clobber_apidoc # Remove rdoc products
rake clobber_appdoc # Remove rdoc products
rake clobber_plugindoc # Remove plugin documentation
rake clone_schema_to_test # Recreate test database from the current schema
rake clone_structure_to_test # Recreate test database from the development structure
rake create_sessions_table # Creates a sessions
rake db_schema_dump # Create a db/schema.rb file
rake db_schema_import # Import a schema.rb file into the database.
rake db_structure_dump # Dump the database structure to a SQL file

http://api.rubyonrails.com/classes/ActiveRecord/Migration.html
http://www.martinfowler.com/articles/rake.html

 ObjectiveView

rake default # Run all the tests on a fresh test database
=rake drop_sessions_table # Drop the sessions table
rake freeze_edge # Lock this application to the Edge
rake freeze_gems # Lock this application to the current gems
rake load_fixtures # Load fixtures into the current environment's database
rake migrate # Migrate the database according to the migrate scripts
 # (only supported on PG/MySQL). A specific version can be targetted with VERSION=x
rake plugindoc # Generate documation for all installed plugins
rake prepare_test_database # Prepare the test database and load the schema
rake purge_sessions_table # Drop and recreate the session table
rake purge_test_database # Empty the test database
rake reapidoc # Force a rebuild of the RDOC files
rake recent # Run recently modified tests
rake stats # Report code statistics
rake test_functional # Run tests for test_functional
rake test_plugins # Run tests for test_pluginsenvironment
rake test_units # Run tests for test_unitsprepare_test_database
rake unfreeze_rails # Unlock this application from freeze of gems or edge
rake update_javascripts # Update javascripts in your current Rails installation

If you’re following along on your own computer you might
notice that I shortened some of the task descriptions for size
reasons.

What do Rake tasks look like? Well, to start with, Rakefiles
are written in Ruby. One of the great attributes of Ruby is that
it is very handy for creating internal domain-specific
languages. So handy, in fact, that almost all programming in
Ruby is done with Ruby code.

If it didn’t quite make sense to you why I made that last
assertion, ask yourself: Is all Java programming done with
Java code? How about .NET? You’ll find that most serious
enterprise programming is actually done with lots and lots of
XML or via complicated GUIs nowadays. Painful!

If we open up the Rakefile we can look for the migrate task
that we ran a minute ago:

Add your own tasks in files placed in lib/tasks ending in .rake,
for example lib/tasks/switchtower.rake, and they
will automatically be available to Rake.
require(
 File.join(File.dirname(__FILE__), 'config', 'boot')
)
require 'rake'
require 'rake/testtask'
require 'rake/rdoctask'

require 'tasks/rails'

Whoops! I forgot that as of a few releases ago the Rails
authors wisely decided to un-clutter project Rakefiles by
importing the default tasks from the Rails installation. We’ll
have to do some digging to find the migrate task. I won’t
bother with the first required file, boot.rb, since I know that it
is responsible for loading both the Rails environment and your
project files.

The next three require statements are for standard Rake library
files included with the Ruby install. We’ll open the rails.rb
file and see what it contains.

Load Rails rakefile extensions
Dir["#{File.dirname(__FILE__)}/*.rake"].each
 { |ext| load ext }

Load any custom rakefile extensions
Dir["./lib/tasks/**/*.rake"].sort.each

 { |ext| load ext }

Dir["./vendor/plugins/*/tasks/**/*.rake"].sort.each
 { |ext| load ext }

No migrate task. But see how concise Ruby code can be?
Remember, Ruby first gained a cult following as a powerful
scripting language. I finally found the rake migrate task in a
file that is loaded by the first line of code: databases.rake

desc "Migrate the database according to the migrate scripts in
db/migrate"

task :migrate => :environment do
 ActiveRecord::Migrator.migrate("db/migrate/",
 ENV["VERSION"] ? ENV["VERSION"].to_i : nil)

 Rake::Task[:db_schema_dump].invoke if
 ActiveRecord::Base.schema_format == :ruby
end

That’s kind of complicated code, but if you take a moment to
decipher it you’ll notice that it takes an optional VERSION
environment variable. If we access our Sqlite3 database file
directly, we can see what the migrate task actually did.

C:\workspace\example>sqlite3 db\development.sqlite3
SQLite version 3.2.7
Enter ".help" for instructions
sqlite> .dump
BEGIN TRANSACTION;
CREATE TABLE schema_info (version integer);
INSERT INTO "schema_info" VALUES(1);
CREATE TABLE users ("id" INTEGER PRIMARY KEY NOT NULL,
"login" varchar(40),
"created_at" datetime, "updated_at" datetime);
COMMIT;

sqlite>

See the schema_info table? That’s where Rails keeps the
current migration version. I’m going to need another couple of
columns in my database so that users can have encrypted
passwords. Let’s add them with another migration script.

C:\workspace\example>ruby script\generate migration
add_password_columns_to_users
 exists db/migrate
 create db/migrate/002_add_password_columns_to_users.rb

Page 18 of 50

This time I’ll use a method named add_column directly:

 ObjectiveView

class AddPasswordColumnsToUsers < ActiveRecord::Migration
 def self.up
 add_column :users, :crypted_password, :string
 add_column :users, :salt, :string
 end

 def self.down
 remove_column :users, :crypted_password
 remove_column :users, :salt
 end
end

Then I’ll run migrate one more time and we should be ready to
write our first ActiveRecord model class in Ruby.

C:\workspace\example>rake migrate
(in C:/workspace/example)

ActiveRecord Models
Martin Fowler described the ActiveRecord pattern in Patterns
of Enterprise Application Architecture as follows: An object
that wraps a row in a database table or view, encapsulates the
deatabase access, and adds domain logic on that data. The
pattern was chosen for Rails in the interest of decreasing the
amount of effort it takes to build a database-backed domain
model. [http://www.martinfowler.com/eaaCatalog/activeRecord.html]
Speaking from experience, ActiveRecord models are much
easier to develop compared to using DataMapper-based
solutions such as Hibernate. Since Ruby is single-inheritance
like Java, it bothered me that to use ActiveRecord your
persistent domain models must extend the ActiveRecord::Base
class, but in practice I haven’t found it to be a problem.

More Generators
We’ve already used the generator script to create migrations
files. Rails provides code generation where it makes sense,
especially to produce boilerplate code. Rails includes basic
generators…

C:\workspace\example>ruby script\generate
Usage: script/generate [options] generator [args]

General Options:

 -p, --pretend Run but do not make any changes.
 -f, --force Overwrite files that already exist.
 -s, --skip Skip files that already exist.
 -q, --quiet Suppress normal output.
 -t, --backtrace Debugging: show backtrace on errors.
 -h, --help Show this help message.
 -c, --svn Modify files with subversion. (Note: svn must be
in path)

Installed Generators
 Builtin: controller, mailer, migration, model, plugin, scaffold,
session_migration, web_service
More are available at http://rubyonrails.org/show/Generators

We create our User model class using the model generator.

C:\workspace\example>ruby script\generate model User
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/user.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml

You’re following along on your own computer right? Take a
moment to browse through the generated files and get a feel
for what Rails considers boilerplate code. (Hint: There’s not
much of it.) We’ll come back to all these files in a moment.

The User Model
Since our database is ready, so we can go back to coding our
User model. Let’s take a look at the generated User class.

class User < ActiveRecord::Base
end

Seems empty, but this class is already usable to some extent.
Rails provides a script wrapper around Ruby’s interactive
shell, irb, that automatically loads the Rails environment for
your project. In the console session captured below, first I’ll
instantiate a user object, then I’ll use the ActiveRecord
method create to instantiate a new user object and persist it to
the database in one line. Finally, I’ll query the database using
the find method to verify that the new User object was
persisted.

C:\workspace\example>ruby script\console
Loading development environment.

>> User.new
=> #<User:0x381b770 @attributes={"salt"=>nil, "updated_at"=>nil,
"crypted_password"=>nil, "login"=>nil, "created_at"=>nil}, @new_record=true>

>> User.create(:login=>'obie')
=> #<User:0x37d31a0 @errors=#<ActiveRecord::Errors:0x37d2648 @errors={}, @base=#<User:0x37d31a0 ...>>, @attributes={"salt"=>nil,
"updated_at"=>Sun Jan 22 21:52:38 Central Standard Time 2006, "crypted_password"=>nil, "id"=>1, "login"=>"obie", "created_at"=>Sun Jan 22 21:52:38
Central Standard Time 2006}, @new_record=false>

>> User.find(:all)
=> [#<User:0x37caea8 @attributes={"salt"=>nil, "updated_at"=>"2006-01-22 21:52:38", "crypted_password"=>nil, "id"=>"1", "login"=>"obie",
"created_at"=>"2006-01-22 21:52:38"}>]

Page 19 of 50

http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://api.rubyonrails.org/classes/ActiveRecord/Base.html

 ObjectiveView

How does the User object know about the database if we
haven’t programmed any attributes into it yet? The secret is in
how ActiveRecord interacts with the database, and the easiest
way to describe it is to take a peek at the development.log file.

The first 9 lines show what happened during our migration a
little while ago. I highlighted the lines that were logged during
our console session.

SQL (0.000000) SQLite3::SQLException: no such table: schema_info: SELECT * FROM schema_info
SQL (0.000000) SELECT name FROM sqlite_master WHERE type = 'table'
SQL (0.079000) CREATE TABLE schema_info (version integer)
SQL (0.109000) INSERT INTO schema_info (version) VALUES(0)
SQL (0.000000) SQLite3::SQLException: table schema_info already exists: CREATE TABLE schema_info (version integer)
SQL (0.000000) SELECT version FROM schema_info
Migrating to CreateUserTable (1)
SQL (0.000000) SQLite3::SQLException: no such table: users: DROP TABLE users
SQL (0.110000) CREATE TABLE users ("id" INTEGER PRIMARY KEY NOT NULL, "login" varchar(40), "crypted_password" varchar(40), "salt"
varchar(40), "created_at" datetime, "updated_at" datetime)
SQL (0.156000) UPDATE schema_info SET version = 1

SQL (0.000000) PRAGMA table_info(users)
SQL (0.000000) INSERT INTO users ("salt", "updated_at", "crypted_password", "login", "created_at") VALUES(NULL, '2006-01-22 21:52:38', NULL,
'obie', '2006-01-22 21:52:38')
User Load (0.000000)
SELECT * FROM users

The PRAGMA table_info(users) statement sheds some light
on what ActiveRecord is doing behind the scenes. Let’s see
what that statement returns using the sqlite3 console.

C:\workspace\example>sqlite3 db\development.sqlite3
SQLite version 3.2.7
Enter ".help" for instructions
sqlite> PRAGMA table_info(users);
0|id|INTEGER|99||1
1|login|varchar(40)|0||0
2|crypted_password|varchar(40)|0||0
3|salt|varchar(40)|0||0
4|created_at|datetime|0||0
5|updated_at|datetime|0||0
sqlite>

Rails is actually reading the schema of your database table and
using that to dynamically add properties to your model. No
more getter and setter methods! Many would argue that such
tight binding to the database is a bad thing. I’ll remind them
that we’re following the ActiveRecord pattern – it might be a
bad thing if you were trying to hide the fact that your
persistent classes are backed by a database model, but we’re
not. Pragmatism and not repeating yourself (the DRY
principle) are important opinions of Rails.

Testing
The importance of TDD (Test-Driven Design) is another
important opinion of Ruby on Rails. Since we have no
compiler safety-net in Ruby, it is especially crucial that we
maintain full test-coverage of application code. Otherwise, the

only way we’ll find bugs is via manual testing (or reports from
frustrated end-users.)

Rails encourages automated testing by including
comprehensive testing capabilities built right into the
framework. Functional tests verify correct controller code and
unit tests verify domain logic included in ActiveRecord
models.

test/fixtures
test/functional
test/mocks/development
test/mocks/test
test/unit

Rails expresses its TDD opinion by not giving you any
excuses not to test. Look closesly at the list of files created
when we generated the User model. There is a user_test.rb in
there…

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 fixtures :users

 # Replace this with your real tests
 def test_truth
 assert_kind_of User, users(:first)
 end
end

The easiest unit test you ever wrote, huh? Let’s run it and see
what happens.

C:\workspace\example>rake
(in C:/workspace/example)

c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-
0.6.2/lib/rake/rake_test_loader.rb" "test/unit/user_test.rb"

Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader
Started
.
Finished in 0.219 seconds.

Page 20 of 50

1 tests, 1 assertions, 0 failures, 0 errors

 ObjectiveView

Green bar! Of course, it doesn’t really prove anything does it?
What did that test actually try to do anyway? The method call
users(:first) relies on the Fixtures system that Rails bakes
directly into the Test::Unit library included with Ruby.
There’s much to be said about fixtures, but not by me in this
article. I’ll simply explain that it is the system by which you
can easily create test data to be used in your tests. Again I’ll
point you at the Rails documentation for more information:
http://api.rubyonrails.com/classes/Fixtures.html.

Back to the unit test to TDD the functionality we want to
include in the User model. First, we shouldn’t be able to create
a user without a login attribute. I comment out the call to
fixtures since we don’t need it yet.

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 #fixtures :users

 def test_should_require_login
 user = User.create(:login => nil)
 assert user.errors.on(:login)
 end
end

The create method is defined in ActiveRecord::Base. It takes a
hash of attributes to initialize the object with and invokes
save, which does not throw an exception if the save operation
fails. (You can use save! instead if you’d like an exception
thrown) As alluded to by the test case above, User has an
errors object that contains any errors encountered during
persistence operations. If user.errors.on(:login) returns nil the
assert will fail.

Run the default rake task to execute your suite of automated
tests:

C:\workspace\example>rake
(in C:/workspace/example)
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader.rb"
 "test/unit/user_test.rb"
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader
Started
F
Finished in 0.468 seconds.

 1) Failure:
test_should_require_login(UserTest) [./test/unit/user_test.rb:8]:
<nil> is not true.

1 tests, 1 assertions, 1 failures, 0 errors
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader.rb"

rake aborted!
Test failures

The test fails because right now, because User is perfectly
happy with a null login. We’ll change that using one of the
many validation methods available.

class User < ActiveRecord::Base
 validates_presence_of :login
end

Then run the test…

C:\workspace\example>rake recent
(in C:/workspace/example)
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader.rb"
 "test/unit/user_test.rb"
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader
Started
.
Finished in 0.281 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

We can validate other things as well. For instance, user logins
should be unique. We can leverage fixtures for this test. What
do we have in the users.yml file right now?

Read about fixtures at

first:
 id: 1
another:
 id: 2

http://ar.rubyonrails.org/classes/Fixtures.html

Page 21 of 50

http://api.rubyonrails.com/classes/Fixtures.html
http://api.rubyonrails.com/classes/ActiveRecord/Validations/ClassMethods.html
http://api.rubyonrails.com/classes/ActiveRecord/Validations/ClassMethods.html

 ObjectiveView

Boring! I’ll delete the defaults and put a more interesting
record in there, taking advantage of the templating capacities
available in fixtures.

quentin:
 id: 1
 login: quentin
 created_at: <%= 5.days.ago.to_s :db %>
 updated_at: <%= 5.days.ago.to_s :db %>

Now I can add the new test method.

class UserTest < Test::Unit::TestCase
 fixtures :users

 def test_should_require_login
 user = User.create(:login => nil)
 assert user.errors.on(:login),
 "no errors creating user with nil login"
 end

 def test_should_require_unique_login
 user = User.create(:login => 'quentin')
 assert user.errors.on(:login),
 "no errors creating another quentin user"
 end

Of course it fails. Notice I used the assert method’s optional
message parameter this time.

C:\workspace\example>rake
(in C:/workspace/example)
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader.rb"
 "test/unit/user_test.rb"
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader
Started
.F
Finished in 0.328 seconds.

 1) Failure:
test_should_require_unique_login(UserTest) [./test/unit/user_test.rb:13]:
no errors trying to create another quentin user.
<nil> is not true.

2 tests, 2 assertions, 1 failures, 0 errors
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake/rake_test_loader.rb"

rake aborted!
Test failures

We’ll need another validation to make this test pass. Since
you’re probably getting my drift by now I’ll go ahead and add
the rest of the login validations.

class User < ActiveRecord::Base
 validates_presence_of :login
 validates_uniqueness_of :login
 validates_length_of :login, :within => 3..40
end

[editor’s note: validates_presence_of is an example of a meta-
programming macro – it generates code on the fly. See the
Ruby article earlier for a description of meta-programming]

Notice how well the code reads? Many people have described
the Rails APIs as a collection of domain-specific languages
for creating web applications. Rails is proof that Ruby is a
fantastic language for writing internal domain-specific
languages. Martin Fowler covered the concept of ‘Internal
DSL’ in his article about http://martinfowler.com/articles/languageWorkbench.html.

Okay, we should add password functionality to this User class
now, but first we’ll add a couple more tests for user_test.rb

 def test_should_require_password
 user = User.create(:login=> 'obie', :password => nil)
 assert user.errors.on(:password)

 end

 def test_should_require_password_confirmation
 user = User.create((:login=> 'obie',
 :password => 'qwerty',
 :password_confirmation => nil)
 assert user.errors.on(:password_confirmation)
 end

We didn’t add a ‘password’ column to User when we created
the database table. Instead we give User a password attribute
directly in its Ruby code using the attr_accessor method.

class User < ActiveRecord::Base
 attr_accessor :password

 validates_presence_of :login
 validates_length_of :login, :within => 3..40
 validates_uniqueness_of :login

 validates_presence_of
 :password,
 :password_confirmation,
 :if => :password_required?

 validates_length_of
 :password,
 :within => 3..40,
 :if => :password_required?

 validates_confirmation_of :password,

Page 22 of 50

 :if => :password_required?

http://martinfowler.com/articles/languageWorkbench.html

 ObjectiveView

 protected

 def password_required?
 crypted_password.nil? or not password.blank?
 end

end

After refactoring the test code and extracting the common user
creation code, it looks like this…

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 fixtures :users

 def test_should_require_login
 user = create_user(:login => nil)
 assert user.errors.on(:login)
 end

 def test_should_ignore_blank_password
 users(:quentin).password = ''
 assert users(:quentin).valid?
 users(:quentin).password = 'foo'
 assert !users(:quentin).valid?
 end

 def test_should_require_unique_login
 user = create_user(:login => 'quentin')
 assert user.errors.on(:login)
 end

 def test_should_require_password
 user = create_user(:password => nil)
 assert user.errors.on(:password)
 end

 def test_should_require_password_confirmation
 user = create_user(:password_confirmation => nil)
 assert user.errors.on(:password_confirmation)
 end

 protected

 def create_user(override = {})
 User.create({:login => 'obie',
 :password => 'qwerty',
 :password_confirmation => 'qwerty'}.merge(override))
 end

end

The only thing left is to add the encryption and authentication
methods. For the sake of brevity here is the complete User
class including that functionality. Notice addition of a
before_save callback declaration and an authenticate class
method.

class User < ActiveRecord::Base
 attr_accessor :password

 validates_presence_of :login
 validates_length_of :login, :within => 3..40
 validates_uniqueness_of :login

 validates_presence_of
 :password,
 :password_confirmation,
 :if => :password_required?

 validates_length_of
 :password,
 :within => 3..40,
 :if => :password_required?

 validates_confirmation_of

 :password,
 :if => :password_required?

 before_save :encrypt_password

 # Authenticates user by login name and
 # unencrypted password
 # and returns the user or nil
 def self.authenticate(login, password)
 user = find(:first,
 :select => 'id, salt',
 :conditions => ['login = ?', login])
 return nil if user.nil?

 find(:first, :conditions => ["id = ? AND crypted_password = ?",
 user.id, user.encrypt(password)])
 end

 # Encrypts the password with the user salt
 def encrypt(password)
 self.class.encrypt(password, salt)
 end

 # Encrypts some data with the salt provided
 def self.encrypt(password, salt)
 Digest::SHA1.hexdigest("--#{salt}--#{password}--")
 end

 # before filter
 def encrypt_password
 return if password.nil? # guard

 self.salt =
 Digest::SHA1.hexdigest("--#{Time.now.to_s}--#{login}--")
 if new_record?

 self.crypted_password = encrypt(password)
 end

 protected

 def password_required?
 crypted_password.nil? or not password.blank?
 end

end

My final users.yml and unit test.

quentin:
 id: 1
 login: quentin
 salt: 62a636a58d0648eadf7410aa2e4444866174c96e
 crypted_password: be61f3ff72492591afe5081857a8ff17a85b21f9 # quentin
 created_at: <%= 5.days.ago.to_s :db %>
 updated_at: <%= 5.days.ago.to_s :db %>

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 fixtures :users

 def test_should_require_login
 u = create_user(:login => nil)
 assert u.errors.on(:login)
 end

 def test_should_ignore_blank_password
 users(:quentin).password = ''
 assert users(:quentin).valid?
 users(:quentin).password = 'foo'
 assert !users(:quentin).valid?
 end

 def test_should_require_unique_login

Page 23 of 50

 u = create_user(:login => 'quentin')

 ObjectiveView

 assert u.errors.on(:login)
 end

 def test_should_require_password
 u = create_user(:password => nil)
 assert u.errors.on(:password)
 end

 def test_should_require_password_confirmation
 u = create_user(:password_confirmation => nil)
 assert u.errors.on(:password_confirmation)
 end

 def test_should_reset_password
 users(:quentin).update_attributes(
 :password => 'new password',
 :password_confirmation => 'new password')

 assert_equal users(:quentin),
 User.authenticate('quentin', 'new password')
 end

 def test_should_not_rehash_password
 users(:quentin).update_attribute(:login, 'quentin2')
 assert_equal users(:quentin),
 User.authenticate('quentin2', 'quentin')
 end

 def test_should_authenticate_user
 assert_equal users(:quentin),
 User.authenticate('quentin', 'quentin')
 end

 protected

 def create_user(override = {})
 User.create({:login => 'obie',
 :password => 'qwerty',
 :password_confirmation => 'qwerty'}.merge(override))
 end

end

The final test run.

C:\workspace\example>rake
(in C:/workspace/example)
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-
0.6.2/lib/rake/rake_test_loader.rb"
 "test/unit/user_test.rb"
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-
0.6.2/lib/rake/rake_test_loader
Started
........
Finished in 0.282 seconds.

8 tests, 9 assertions, 0 failures, 0 errors
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/rake-
0.6.2/lib/rake/rake_test_loader.rb"

User Interfaces in Rails
Now that the model is in place we can build a couple of
screens, but due to size constraints for the article I will not
delve into much detail about them. In particular, I’ve left out
coverage of functional testing – Rails gives you a
sophisticated, yet easy to use testing system for controllers. I
recommend you read the great description how controllers
function and the variables and methods available to them in
the Rails docs at:

http://api.rubyonrails.com/classes/ActionController/Base.html

Authentication happens to be one of those aspects of an
application that Rails opines should be left to the application

developer because it varies too much between projects to be
worth incorporating into its layers of abstraction.

A common way used to represent authenticated state in a Rails
app is by capturing the current user’s id in the session. A nil
value for :person_id in the session hash represents
unauthenticated state.

Controllers
Rails provides a base class for all application controllers in
application.rb which is a perfect place for us to insert a
before_filter that redirects unauthenticated users to the login
page. Notice how naturally the program logic reads very
naturally.

class ApplicationController
 before_filter :check_authentication

 protected
 def check_authentication
 if session[:person_id].nil? then
 redirect_to :controller => 'login'
 end
end

Unauthenticated requests will be redirected to
login_controller.rb, which handles logging in and out of our
application and does not extend ApplicationController.

class LoginController < ActionController::Base

 def index
 render :action => 'login'
 end

 def login
 if request.post?
 session[:person]
 = Person.authenticate(params[:login], params[:password])
 if session[:person]
 flash[:notice] = "Successfully logged in"
 redirect_to :controller => 'home'
 else
 flash[:notice] = "Login failed"
 end
 end
 end

 def logout
 reset_session
 redirect_to :action => 'login'
 end
end

As you can see above, upon successful login the login
controller will redirect the user to the homepage.
Finally, here is a simple home_controller.rb which is
protected by the filter in ApplicationController. Instance
variables (prefixed with an ‘@’ symbol) are copied from the
controller instance to whatever templates are used to render
the final HTML output.

Page 24 of 50

class HomeController < ApplicationController
 def index
 @user = User.find(session[:person_id])
 end
end

http://api.rubyonrails.com/classes/ActionController/Base.html

 ObjectiveView

Templates
Finally, RHTML files are parsed by a simple Ruby templating
engine named ERB. The syntax is very similar to ASP and
JSP files.
Here is the relatively simple views/home/index.rhtml
template:

<h1>Hello, <%= @user.login %></h1>

…and also the views/login/login.rhtml template. Notice how
the folder and name of the template file follows the controller
and action name.

<div class="centered">
 <div id="login" class="card">
 <h1>Login</h1>
 <%= form_tag :action => 'login' %>
 <p>
 <label for="login">Login</label>

 <%= text_field_tag 'login' %>

 <label for="password">Password</label>

 <%= password_field_tag 'password' %>
 </p>
 <p><%= submit_tag 'Log in' %></p>
 <%= end_form_tag %>
 </div>
</div>

Here’s the screen you get from this:

Rails provides many helper methods such as form_tag and
text_field_tag which simplify creation of HTML fields with
dynamic content.

Conclusion
I hope that via this introductory article I’ve communicated
some of the magic of Ruby on Rails and given you a taste for
why it’s quickly becoming the most popular web application
framework out there. I tried to hit on the main points and tools
that you will want to familiarize yourself with as you get
started with Rails programming. If you’re interested in
learning more I strongly recommend the excellent Rails book
from Pragmatic Programmers: Agile Web Development with
Rails written by Dave Thomas and David Heinemeir Hansson.

Obie Fernandez is author of the forthcoming book,
"Extending Ruby on Rails (Into the Enterprise)", which is
scheduled to launch the new "Addison-Wesley Professional
Ruby Series" in Fall, 2006, for which
Obie will also serve as Series Editor. "Extending Ruby on
Rails" will be the flagship book in a robust library of learning
tools for how to leverage Ruby-based technology in the
enterprise, along with the newest agile development
techniques.

Page 25 of 50

advertisment

international association of software architects

The IASA was created by architects for architects to solve the major

problems facing IT architects today. Our resources are scarce: Architects have very
few resources to work with. It is often very difficult to find the materials we need to do

our jobs. It is difficult to judge quality: Very few people agree on the fundamental
components of architecture or what it takes to become a qualified architect. Our

experience isn't portable: Every employer defines and uses architecture differently.
Lack of community: There is no way to quickly find peers of our own calibre to

discuss the issues which drive us.
Joining the IASA is very simple. You can register at your local chapter

or on the IASA website at www.IASAhome.org.

http://www.iasahome.org/

 ObjectiveView

advertisment

http://www.objectiveviewmagazine.com/

Page 26 of 50

http://www.objectiveviewmagazine.com/
http://www.objectiveviewmagazine.com/

 ObjectiveView

Opinion ♦ Specs Are Bad ♦ Rebecca Wirfs-Brock ♦ Opinion

It’s official... specs are “bad” …according to Linus Torvalds. I have to chime
in on Linus’ newsgroup posting and the attendent buzz it sparked on the net
recently (and on the Linux Kernel mailing list).

Linus stated:

 “So there's two MAJOR reasons to avoid

specs: they're dangerously wrong. Reality is different, and anybody who
thinks specs matter over reality should get out of kernel programming
NOW. When reality and specs clash, the spec has zero meaning. Zilch.
Nada. None. It's like real science: if you have a theory that doesn't match
experiments, it doesn't matter how much you like that theory. It's wrong.
You can use it as an approximation, but you MUST keep in mind that it's
an approximation. Specs have an inevitably tendency to try to introduce
abstractions levels and wording and documentation policies that make
sense for a written spec. Trying to implement actual code off the spec
leads to the code looking and working like crap.”

He went on to conclude:

"But the spec says ..." is pretty much always a sign of somebody who has
just blocked out the fact that some device doesn't. So don't talk about
specs. Talk about working code that is readable and works. There's an
absolutely mindbogglingly huge difference between the two.

This posting launched an onslaught of discussion. Linus is
right. Reality always differs from a specification of how
software is supposed to behave. That’s a reflection on how
difficult it is to write precise specifications of behavior and on
how many decisions during implementation are left open .
Still, I'm not willing to say "no specs, ever" even though I'm a
signer of the Agile Manifesto and on the board of the Agile
Alliance. We need to get better at recognizing what types of
descriptions do add value and under what circumstances. And
become more aware of when and where precision is needed
(and when it drags us down).

Linus points out that specs often introduce abstractions and
concepts that shouldn’t be directly implemented in code. I
never expect to directly translate what someone writes into
code without using my brain. I design and think before and
during and after coding…and nothing substitutes for
testing/proving out a design and implementation against the
real environment it works in.

But that doesn’t mean specs have no value. Working, readable
code isn’t the only thing that matters. It matters very much in
the short and long term. But try understanding design rationale
by just reading code. Or reading the test code. It's difficult, if

not impossible. I find value in design documentation that
explains the tricky bits. This type of documentation is
especially valuable when those coding aren’t going to hang
around to offer explanations.

A spec. is an approximation of what is desired. I certainly
don't expect it to tell me everything. There can be enormous
value in writing descriptions of what software should do—
especially when it is important to communicate design
parameters and system behaviors instead of just providing an
implementation. Most developers aren’t good at writing specs,
let alone descriptions/discussions about their code and design
choices. But that doesn’t mean they should stop writing them
and resort to “organic code growth” in every situation. A firm
believer in agile practices, I don’t insist on writing merely for
fun or because it is expected.

But if I need a spec, I write it. And if doesn’t reflect reality or
is misunderstood, I change it if there is value in keeping it up
to date. There may not be. And if that's the case, I don't update
it. It depends on the project and the need. It helps if I write
these descriptions for someone who wants to read them (and
will actually use it rather than toss it aside). I've got to know
my audience. That often takes experimentation. Maybe I need
to include sample prototype code in addition to design
notes/models/sketches. Maybe I don’t.

Communicating ideas to a diverse audience is especially hard.
But specs aren't the problem. It's that effectively
communicating how something works or should work is more
difficult than cutting code. I prefer working code over piles of
outdated, difficult diagrams and explanations. But that doesn't
duck the issue. Specs aren't inherently bad. Most spec writers
would rather be doing something else. And that is a
problem…

Rebecca Wirfs-Brock, author of Object Design: Roles,
Responsibilities and Collaborations, invented the way of
thinking about objects known as Responsibility-Driven
Design. Find out more out Rebecca and her services at
http://www.wirfs-brock.com.

Have Your Say!
Join the ObjectiveView discussion and feedback group.

Simply visit:
groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView

email: objective.view@ratio.co.uk subject: subscribe

Page 27 of 50

http://www.wirfs-brock.com/
mailto:objective.view@ratio.co.uk

 ObjectiveView

The Glacial Methodology: A Data-Oriented Approach to Software
Development – Scott Ambler

Although object technology was introduced within the business community in the
early 1990s, popularized in the late 1990s, and finally adopted as the defacto
technology platform for new development in the early 2000s, it has clearly failed
to deliver on its promise…

It is time to admit this to ourselves and

abandon the “modern” software development techniques
of the object community; Instead, we must re-embrace
the tried and true approaches of the past. Now is the
time for the Glacial Methodology™.

The Glacial Methodology is composed of seven distinct
phases:
1. Project Initiation. During this phase you put

together your project team and project plan. A
Glacial team is typically comprised of a Project
Manager, a Data Team lead (the person who is
actually in charge), a Senior Data Architect, several
Junior Data Architects, several Data Analysts, a
Database Administrator (DBA), one or two
application developers, and perhaps a tester or two.
Your project plan will depict the milestones crucial
to your project success: The delivery of the
conceptual data model, the logical data model, and
the physical data model.

2. Conceptual Modeling. Your conceptual data
model forms the foundation upon which all
development is based and that it is therefore
imperative that you start with a highly detailed,
reviewed, and accepted model. It is possible to
finalize a conceptual data model within the first six
to eight weeks of your project.

3. Logical Data Modeling. A logical data model
(LDM) fleshes out business entities with detailed
descriptions of their data attributes and the
relationships between entities. Data requirements
are gathered during this stage, information which is
captured within your LDM as well as in your data
requirements specification – Glacial data
professionals understand the importance of
comprehensive documentation.

4. Physical Data Modeling. You develop a detailed
physical data model (PDM) based on your reviewed
and accepted LDM. The PDM is used to generate
your database schema and to help drive the
modeling efforts of the application developers.

5. Application Development. Following the traditions
of the traditional data community, the Glacial
Methodology ignores trivial issues which are better
left to application development teams. These issues
include, but are not limited to understanding the
usage requirements for the system, system usability,
security, network architecture, hardware
architecture, deployment, scheduling, estimation,
component design, user interface design, overall
functionality, and testing. These minor issues will
be addressed by the development team when it goes
rogue by choosing to ignore all of the previous
modeling work.

6. System and Acceptance Testing. There is likely
no time left at the end of the project, so there is little
need to discuss this.

7. Deployment. Assuming the project hasn't been
cancelled by this point, you will deploy whatever
was actually built into production.

The Glacial Methodology is described in detail at
www.ambysoft.com/essays/glacialMethodology.html,
and yes it’s an April Fool's joke (editor’s note: you are
reading this one April 1 – aren’t you?). If your
organization follows a Glacial approach you've likely
got a serious problem, and you might want to visit
www.agiledata.org/essays/differentStrategies.html for a
detailed discussion of better options.

See also www.waterfall2006.com for similar items!

Page 28 of 50

Have Your Say!
Join the ObjectiveView discussion and feedback group.

Simply visit:
groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView

email: objective.view@ratio.co.uk subject: subscribe

http://www.ambysoft.com/essays/glacialMethodology.html
http://www.agiledata.org/essays/differentStrategies.html
http://www.waterfall2006.com/
mailto:objective.view@ratio.co.uk

 ObjectiveView

Aspect-Oriented Programming with AspectJ

Object-oriented programming (OOP) is, without any doubt, one of the most
important programming paradigms in the history of software engineering. In spite
of this achievement, object-oriented programming has demonstrated to be
inadequate in dealing with crosscutting concerns [2]. Alex Ruiz explains …

A concern is a particular area of interest in an application. A
crosscutting concern is a system-wide concern which
implementation might affect several modules.

Indicators of a crosscutting concern are:
• Code tangling. Code tangling is the result of having

modules in a system that deal with more than one concern
at the same time. A good example is the modules of a
banking system that simultaneously interact with multiple
requirements like business logic, performance, logging,
transaction management and security. Implementing each
concern adds too many elements to the system, which
results in too complicated code.

• Code scattering. Code scattering happens when the
implementation of a crosscutting concern spreads across
several modules. There are two types of code scattering.
The first type is code duplication, which increases code
complexity. As an example, classic transaction
management requires inserting nearly identical code to
multiple modules in an application.

The second type of code scattering takes place when the
implementations of complementary pieces of a concern are
distributed loosely across multiple modules [3]. For example,
in a common implementation of caching, some modules
retrieve objects from the cache while other modules invalidate
cache regions to prevent the storage of stale data.

Example – Caching as a Crosscutting
Concern
In this article we are going to use the crosscutting concern of
caching as example. Our target is the following
implementation of a customer manager, which retrieves a
customer from a data source given the customer’s id – but
apparently contains no explicit caching code:

public class CustomerManager() {

 private CustomerDao customerDao;

 public Customer getCustomer(String customerId) {
 return this.customerDao.getCustomer(customerId);
 }

 // rest of class implementation
}

Listing 1. Simple implementation of a customer manager.

Let’s assume that the retrieval of the customer from the data
source is a very expensive operation. One way to improve the
performance of our application is storing the retrieved
customer in a cache. In other words, we are going to apply

caching to the return value of the method
CustomerDao.getCustomer(String):

public class CustomerManager() {

 private static final Object NULL_OBJECT = new Object();

 private CacheManager cacheManager;
 private CustomerDao customerDao;

 public Customer getCustomer(String customerId) {
 String key = “customer.” + customerId;
 Customer customer = null;
 Object cachedEntry = null;

 try {
 cachedEntry = this.cacheManager.get(key);
 } catch (CacheException e) {
 logCacheException(e);
 }

 if (cachedEntry == null) {
 customer = this.customerDao.getCustomer(customerId);

 Object objectToCache = customer;
 if (objectToCache == null) {
 objectToCache = NULL_OBJECT;
 }

 try {
 this.cacheManager.put(key, objectToCache);
 } catch (CacheException e) {
 logCacheException(e);
 }

 } else if (cachedEntry != NULL_OBJECT) {
 customer = (Customer) cachedEntry;
 }
 return customer;
 }

 // rest of class implementation
}

Listing 2. OOP based - non-aspect implementation of caching.

As we can see in listing 2, implementing caching user OOP
alone added 20 lines of entangled code, none of them related
to the main responsibility of the method. If we needed to apply
caching to other parts of our system, we would end up having
the same caching logic scattered all over our application.
Code tangling and code scattering have the following
(negative) impact on our software:

• Complexity. Code is harder to understand and the main

concern is a lot harder to see. In our example, only the
line in bold implements the real job of the method.

• Maintenance. Code is harder to maintain. Any
maintenance work involving the implementation of one of
the concerns might affect the rest of them. At the same
time, modules implementing multiple concerns
simultaneously tend to be maintained more frequently
than modules implementing a single concern [4].

Page 29 of 50

 ObjectiveView

• Testability. Code is harder to test. In our example, we
need a cache manager, or at least a mock object
simulating it, to test the business logic of our method.

• Code reuse. Code is harder to reuse. It is difficult (and
sometimes impossible) to take modules that implement
multiple concerns and reuse them in systems requiring a
different implementation of those concerns or a totally
different set of concerns [3]. In our example, systems that
need to retrieve customer information from a data source
may not be able to reuse the CustomerManager class
if they have different caching needs or no caching needs
at all.

We can try to minimize code tangling and code scattering by
refactoring the code in listing 2, creating a caching module
that provides an abstract API which hides its implementation
details. This is shown visually in figure 1 - and has somewhat
minimized code duplication by centralizing the calls to the
cache manager into a single module. The problem we try to
solve is still present, just in slightly different form –the calls to
the new caching API are tangled into the client modules and
scattered through the system.

Figure 1. Implementation of caching using OOP [3]. The caching logic has been centralized in a module. Calls to the caching API are still embedded in the client

modules and scattered across the system.

AspectJ to the Rescue
Aspect-oriented programming (AOP) helps us solve these
problems by providing separation of crosscutting concerns
[5]. AOP offers another way to structure our programs by
assembling the code implementing each concern into its own
module. Instead of having code scattered chaotically around
an object model, AOP allows us to modularize crosscutting
concerns into new units of work called aspects [2]. AspectJ,
the most complete implementation of AOP, is a language
extension to Java that treats AOP concepts as first-class
citizens of the language [2].

Modularity is not the only benefit of aspects. Aspects also
encapsulate the implementation details of a crosscutting
concern. Unlike classes, aspects not only hide how something
is done, but also when [4]. By modularizing and encapsulating
the implementation details of a crosscutting concern, an aspect
becomes a unit of abstraction for that concern. Modularity,
encapsulation and abstraction make AOP a powerful tool
against software complexity, a tool that complements OOP
where it is weak –in the implementation of crosscutting
concerns.

Figure 2 gives a visual representation of a caching concern
modularized in an aspect. The core modules do not contain
any calls to the caching API. In fact, the core modules are not
even aware of the use of caching.

Page 30 of 50

Have Your Say!
Join the ObjectiveView discussion and feedback group.

Simply visit:
groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView

email: objective.view@ratio.co.uk subject: subscribe

mailto:objective.view@ratio.co.uk

 ObjectiveView

Figure 2. Implementation of caching using AOP [3]. The crosscutting caching requirement has been modularized into a single module: the caching aspect.
This way, any changes made to the caching concern will only affect the caching aspect leaving the core modules intact.The AspectJ code for this is shown in

the following listing, which we’ll discuss in the following sections:

public aspect CachingAspect() {
 private static final Object NULL_OBJECT = new Object();

 private CacheManager cacheManager;

 pointcut getCustomerOperation(String customerId) :
 execution(public Customer CustomerManager.getCustomer(String))
 && args(customerId);

 Customer around(String customerId) :
 getCustomerOperation(customerId) {

 String key = “customer.” + customerId;
 Customer customer = null;
 Object cachedEntry = null;

 try {
 cachedEntry = this.cacheManager.get(key);
 } catch (CacheException e) {
 logCacheException(e);
 }
 if (cachedEntry == null) {
 customer = proceed(customerId);

 Object objectToCache = customer;
 if (objectToCache == null) {
 objectToCache = NULL_OBJECT;
 }

 try {
 this.cacheManager.put(key, objectToCache);
 } catch (CacheException e) {
 logCacheException(e);
 }

 } else if (cachedEntry != NULL_OBJECT) {
 customer = (Customer) cachedEntry;
 }
 return customer;
 }

 // rest of aspect implementation
}

Listing 3. Implementation of a caching aspect using AspectJ

As we can see, the caching aspect has effectively solved the
problem of code tangling and code scattering. This approach
raises a new issue – if the core modules are not aware of the
caching concern, how does the system know where and when
caching should be executed?

Weaving
The answer to this question relies in the AOP concept of
weaving rules. Weaving rules specify how to integrate the
implemented concerns to build the final system [3]. The
weaving rules for our example identify the points during
program execution where caching should be performed, the
information to be stored in the cache, and so forth. The system
then uses these rules to properly call the caching API from the
specified operations. The process that integrates the concerns
into the final system following the weaving rules is called
weaving.

AspectJ’s weaving rules are based on three concepts:
• Join points. A join point is a point during the execution

of a program. For example, a method invocation or field
access.

• Advice. An advice is an action taken at a particular join
point. For example, the logic that performs caching.

• Pointcut. A pointcut describes a set of join points,
defined to specify when an advice should execute. For
example, a pointcut that identifies the join point defined
by the method getCustomer in listing 2.

Weaving can occur at compile time, post-compile (to weave
into existing class or jar files), or at load time (on class load) –
though it’s beyond the scope of this article to discuss this
further.

Page 31 of 50

 ObjectiveView

Join points
AspectJ exposes a number of different types of join point
within a program [3]:
• Method call and execution
• Constructor call and execution
• Read/write access to a field
• Initialization of classes and objects

• Execution of an exception handler

It is at these points that AspectJ may weave additional code to
implement cross-cutting concerns. Figure 3 shows various join
points that will be exposed during the execution of a
createCustomer method in a CustomerManager class:

Figure 3. Join points in program execution. It is at these points that AspectJ may (subject to the correct pointcuts being used) weave in additional code.

Aspects, Pointcuts and Advice

Aspects
The aspect is the central unit of work in AspectJ, in the same
way that a class is the central unit of work in Java. An aspect
combines pointcuts, advices and declarations. In addition to
those elements, aspects can contain data, methods and nested
classes, just like regular Java classes [3]. The general form of
an aspect is:

[access-modifier] aspect name [extends class-or-aspect]
 [implements interface-list] {

 ...aspect body
}

Here is the definition of the caching aspect from listing 3:

public aspect CachingAspect {
 // aspect body

}
Listing 4 – fragment of declaration of the caching aspect. As we can see it
is very similar to the declaration of a class (taken from listing 3).

Aspects themselves are fairly complex creatures – and may be
declared abstract (and inherited from) or declared as
implementing a particular interface – but for the purposes of
this article the main point is that they are used to encapsulate
elements of a particular concern (such as caching) in an
application. But note in particular that, unlike classes, it makes
no sense to think about instantiating an aspect. The AspectJ
compiler uses the aspect to weave behaviour into other parts
of the application.

Pointcuts

Page 32 of 50

Pointcuts are used to identify particular join points in the
program flow for which we want AspectJ to weave in
additional behaviour (using advice, as we’ll see). Pointcuts
can be declared inside an aspect, a class, or an interface. As
with any other Java artifacts, pointcuts can have access

 ObjectiveView

modifiers (public, protected, private or default) to restrict
access to them.

The general form of named pointcut definition AspectJ is:

[access-modifier] pointcut name([parameter-list]) :
 pointcut-expression;

Here is the declaration of a named pointcut taken from listing
3:

 pointcut getCustomerOperation(String customerId) :
 execution(public Customer CustomerManager.getCustomer(String))
 && args(customerId);
Listing 5. Definition of a named pointcut. The part after the colon defines
the join point we want to identify: any methods starting with “get” in the

class CustomerManager. Note the use of the args() pattern to store a
customerId for later use in advice.

Pointcuts may be used anonymously – without an explicit
name – but most of the time it’s sensible to name them.
AspectJ provides a variety of different types of patterns (as in
textual pattern matching) to use in contructing pointcuts – to
enable the different types of join points discussed earlier to be
matched. These include type-signature patterns, method and
constructor signature patterns, field signature patterns,
lexical-flow based pointcuts, control-flow based pointcuts,
argument pointcuts and last but not least execution object
pointcuts (phew!).

pointcut allGettersExceptCustomerOperations() :
 getterOperations() && !(* CustomerManager.get*(..))

An example pointcut using logical operators (&&, !, etc.) to match
appropriate join points.

AspectJ also provides a fairly rich set of operators and wild-
cards to enable wide or narrow matching as required.

Wildcard Definition

*
Matches any number of characters except the
period

..
Matches any number of characters including
any number of periods

+
Matches any subclass or subinterface of
given type

wildcards for use in constructing pointcuts

Advice
Once we’ve matched some join points with a pointcut, we
need to specify the behaviour to be inserted – that’s what
advices are for. There are three types of advices:

• Before advice: specify behaviour to be executed before

the join point is invoked

• After advice: specify behaviour to be executed after the

join point is invoked

• Around advice: specify behaviour to be executed around

the join point’s execution. The advice is given control and
responsibility for invoking the join point, in addition to
doing its own work [2].

Figure 4. Before, after and around advices applied to different join points in the program flow.

All types of advice are declared using the same baic structure
[4]:

[strictfp] advice-specification [throws type-list] :
 pointcut-expression {
 ...body of advice

Page 33 of 50

}

 ObjectiveView

Advices cannot be called explicitly; therefore there is no need
for access modifiers. The only modifier allowed is
strictfp, which makes all floating-point within the body
of the advice FP-strict [4]. The optional throws clause
specifies the exceptions that the advice may throw. Advices
cannot throw checked exceptions that the clients invoking the
join point are not expecting.

Let’s look at the different types of advice in more detail:

Before Advice
The before advice executes before the captured join point is
invoked. In figure 4 we have an advice that executes before
calling the method getCustomer in the class CustomerDao:

before() : call (* CustomerDao.get*(..)) {
 // advice body
}

If an exception is thrown in the before advice, the operation in
the capture join point will not be executed [3].

After advice
The after advice executes after the captured join point is
invoked. AspectJ offers three types of after advices [2]:

• After returning advice (executed after the successful

completion of a call, in which no exception was thrown)
in the form:

after() returning : call (* CustomerDao.get*(..)) {
 // advice body
}

• After thowing advice. It is executed after the join point

throws a particular exception:

after() throwing : call (* CustomerDao.get*(..)) {
 // advice body
}

• After advice. It is executed after any call to the join

point, regardless of whether it threw an exception:

after(): call (* CustomerDao.get*(..)) {
 // advice body
}

Around advice
The around advice surrounds the captured join point. It is the
most powerful type of advice because:
• It can bypass the executed of the captured join point
• It can execute the captured join point with the same or

different arguments
• It can execute the captured join point more than once,

each time with the same or different arguments

To execute the operation inside the captured pointcut we need
to use the keyword proceed() in the body of the advice [3]. If
proceed() is not called, the execution of the join point is
completely bypassed. Any call to proceed() should contain
the same number and same type of parameters that the
captured operation expects. At the same time, proceed()
returns the same value returned by the captured operation [3].

Join Point Category Pointcut Syntax

Method execution execution(method-signature)

Method call call(method-signature)

Constructor execution execution(constructor-signature)

Constructor call call(constructor-signature)

Class initialization staticinitialization(type-signature)

Field read access get(field-signature)

Field write access set(field-signature)

Exception handler
execution

Handler(type-signature)

Object initialization initialization(constructor-signature)

Object pre-
initialization

preinitialization(constructor-signature)

Advice execution adviceexecution()

Pointcut syntax summary.

Page 34 of 50

 ObjectiveView

Here is the around advice taken from listing 3:

 Customer around(String customerId) :
 getCustomerOperation(customerId) {

 String key = “customer.” + customerId;
 Customer customer = null;
 Object cachedEntry = null;

 try {
 cachedEntry = this.cacheManager.get(key);
 } catch (CacheException e) {
 logCacheException(e);
 }

 if (cachedEntry == null) {
 customer = proceed(customerId);

 Object objectToCache = customer;
 if (objectToCache == null) {
 objectToCache = NULL_OBJECT;
 }

 try {
 this.cacheManager.put(key, objectToCache);
 } catch (CacheException e) {
 logCacheException(e);
 }

 } else if (cachedEntry != NULL_OBJECT) {
 customer = (Customer) cachedEntry;
 }
 return customer;
 }

 // rest of aspect implementation
}

Even though the code is listing 3 is far from perfect, it clearly
demonstrates a complete concern being removed from the
Customer class and being implement in a modularly distinct
CachingAspect.

By letting AspectJ weave the aspect in listing 3 with the code
in listing 1 – we get an aspect oriented version of code shown
in listing 2 – with the two concerns clearly separated.

Inter-type declarations
Changing tack slightly, let’s now take a look at some other
AspectJ capabilities, in particular those related to inter-type
declarations (formally known as introductions):

Inter-type declarations are declarations that cut across classes
and their hierarchies [7]. Inter-type declarations modify the
static structure of types (classes, interfaces and aspects) and
their compile-time behavior [3]. Again, they are used to assist
in the seperation of cross-cutting concerns into distinct
modular units.

Inter-type declarations can be used to introduce fields,
methods and constructors to an existing class, as well as to
manipular interface and inheritance hierarchies in a controlled
manner.

Field introduction
Field introduction is used to add a new attribute to an existing
class – but in a manner which separates the new code (a

different concern) from the original class. The general form of
an inter-type field is [4]:

[modifiers] field-type target-type.field-name;

In the following example, we are introducing the field
listeners which “listen” to any change made to the properties
of the class Customer (from figure 5):

private List<PropertyChangeListeners> Customer.listeners =
 new ArrayList<PropertyChangeListeners>();

The listeners field is not part of the state of a customer, and
the declaration and use of this field clutter the implementation
of the Customer class. Furthermore, listening to property
changes is not the responsibility of the Customer class.

Method and constructor introduction
The general form of an inter-type method is [4]:

[modifiers] return-type target-type.method-name([parameter-list])
 [throws type-list] { method-body }

and an inter-type constructor:

[modifiers] target-type.new([parameter-list])
 [throws type-list] { method-body }

Like inter-type fields, inter-type methods can have public,
private or default access, but cannot have protected access.
The declaration of an inter-type method is similar to the
declaration of any ordinary method, with the addition of
target-type.

Here we add an inter-type constructor registration of the
listeners to the example introduced previously:

public Customer.new(String customerId) {
 this.customerId = customerId;
}

private List<PropertyChangeListeners> Customer.listeners =
 new ArrayList<PropertyChangeListeners>();

public void Customer.addListener(PropertyChangeListener listener) {
 listeners.add(listener);
}

public Listener Customer.removeListener(int index) {
 return listener.remove(index);
}

As we can see, we can refer to the inter-type field listeners in
the same way we would refer to any regular field declared in
the Customer class. Because the introduced methods are
public, they can be called from anywhere in the application.

Page 35 of 50

Note again: what we’ve effectively done here is separated the
implementation of a concern (listening) from an existing class
(Customer) – thereby making a substantial improvement to
the structure of our source code – separating out different
concerns.

 ObjectiveView

advertisment

Page 36 of 50

http://www.objectiveviewmagazine.com/

http://www.objectiveviewmagazine.com/

 ObjectiveView

Interface and super type manipulation
Let’s assume we need to store one or more instances of
Customer in a List. Later on, we realize we need to display in
a web page the list of customers sorted by last name in
descending order.

One way to do this is having the Customer class implement
the Comparable interface. If we choose to take this route, we
will have to implement the compareTo method too. Since this
extra code is not part of the state of a Customer, we probably
want to separate this functionality from the implementation of
the Customer class. Here is how we could achieve this
separation using AspectJ:

declare parents : Customer implements Comparable;

public int Customer.compareTo(Object obj) {
 // method implementation
}

In this simple example, we made the Customer class
implement the Comparable interface. By using method
introduction, we specified the implementation of the methods
such interface.

We can also use the construct declare parents to change the
super-type of a set of classes matching a type pattern [4]. For
example:

declare parents : Customer extends Observable;

And finally… @AspectJ Annotations
In AspectJ 5 it is possible to write aspects using plain Java.
AspectJ provides a set of Java 5 annotations that identify
regular Java classes as aspects so they can be interpreted by
the weaver. The AspectJ annotations are located in the
org.aspectj.lang.annotation package.

Following are some examples of AspectJ elements rewritten
using Java:

AspectJ language Java with AspectJ Annotations

public aspect MyAspect {
 // aspect body
}

@Aspect
public class MyAspect {
 // aspect body
}

pointcut aCall() :
 call(* *.*(..));

@Pointcut("call(* *.*(..))")
void aCall() {}

before() : aCall() {
 // advice body
}

@Before(“aCall()”)
void aCallAdvice() {
 // advice body
}

Let’s rewrite the aspect in listing 3 using plain Java:

@Aspect
public class CachingAspect() {

 private static final Object NULL_OBJECT = new Object();

 private CacheManager cacheManager;

 @Pointcut(“execution(” +
 “public Customer CustomerManager.getCustomer(String)) ” +
 “&& args(customerId)”)
 void getCustomerOperation(String customerId) { }

 @Around(“getCustomerOperation(customerId)”)
 public Customer onCustomerOperation(
 ProceedingJoinPoint thisJoinPoint,String CustomerId) {

 String key = “customer.” + customerId;
 Customer customer = null;
 Object cachedEntry = null;

 try {
 cachedEntry = this.cacheManager.get(key);
 } catch (CacheException e) {
 logCacheException(e);
 }

 if (cachedEntry == null) {

 customer =
 thisJoinPoint.proceed(new Object[] {customerId});

 Object objectToCache = customer;
 if (objectToCache == null) {
 objectToCache = NULL_OBJECT;
 }

 try {
 this.cacheManager.put(key, objectToCache);
 } catch (CacheException e) {
 logCacheException(e);
 }

 } else if (cachedEntry != NULL_OBJECT) {
 customer = (Customer) cachedEntry;
 }
 return customer;
 }

 // rest of aspect implementation
}

Listing 7. Aspect written in plain Java.

Page 37 of 50

The aspect in listing 7 shows how to implement proceed() in
Java. If we simply call proceed() like we did in the aspect in
listing 5 we will get an compilation error because the method
does not exist. We need to pass an instance of

 ObjectiveView

org.aspectj.lang.ProceedingJoinPoint as argument of the
method annotated as an around advice. ProceedingJoinPoint
exposes the proceed(..) method in order to support around
advice.

Aspects created using plain Java are compiled by the regular
Java 5 compiler, and then woven by the AspectJ weaver as an
additional build step, for example. Writing aspects in plain
Java comes in handy when working with IDEs that do not
have support for the AspectJ language extensions (e.g.
NetBeans.) Please note that aspects written in plain Java and
AspectJ language can be mixed within the same application.

Conclusions
Aspect-Oriented Programming focuses on the modularization,
encapsulation and abstraction of crosscutting concerns. AOP
does not aim to compete with OOP. Instead, AOP
complements OOP where it is weak –in the implementation of
crosscutting concerns.

AspectJ provides the most complete implementation of AOP.
It offers extensions for the Java language that define the
elements necessary for the implementation of crosscutting
concerns. Since AspectJ is an extension of Java, developers
will find it easy to learn. In this article, we just scratched the

surface of what can be done with AspectJ. The new features
added in version 5 like load-time weaving and the ability to
write aspects in plain Java make AspectJ one of the most
powerful tools against software complexity.

References
[1] E. Gamma et al, “Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison-Wesley, 1995
[2] R. Johnson and J. Hoeller, “J2EE Development Without EJB”, Wrox Press,

2004
[3] R. Laddad, “AspectJ in Action: Practical Aspect-Oriented Programming”,

Manning, 2003
[4] A. Colyer et al, “eclipse AspectJ”, Addison-Wesley, 2005
[5] I. Jacobson and P. NG, “Aspect-Oriented Software Development With Use

Cases”, Addison-Wesley, 2004
[6] Wikipedia at: http://en.wikipedia.org/wiki/Aspect-oriented_programming

(last visited, January 2006)
[7] The AspectJ Programming Guide at:

http://www.eclipse.org/aspectj/doc/released/progguide/index.html (last
visited, January 2006)

[8] S. Clarke and E. Baniassad, “Aspect-Oriented Analysis and Design. The
Theme Approach”, Addison-Wesley, 2005

Alex Ruiz has designed and developed software for the past 7
years. After suffering a traumatic experience with waterfall
software development, Alex has embraced XP and has carried
it in his heart ever since. Alex enjoys reading anything related
to Java, J2EE, AOP and lightweight containers and has
programming as his second love. Alex is a proud employee of
ThoughtWorks and is an active member and committer of the
Spring Framework community.

Advertisment

Page 38 of 50

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

 ObjectiveView

Historical Perspectives ♦ Goto Considered Harmful ♦ Edsger W. Dijsktra

For a number of years I have been familiar with the observation that the quality of
programmers is a decreasing function of the density of go to statements in the programs they
produce…

More recently I discovered why the use of the go to statement
has such disastrous effects, and I became convinced that the
go to statement should be abolished from all "higher level"
programming languages (i.e. everything except, perhaps, plain
machine code). At that time I did not attach too much
importance to this discovery; I now submit my considerations
for publication because in very recent discussions in which the
subject turned up, I have been urged to do so.

My first remark is that, although the programmer's activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to
accomplish the desired effect; it is this process that in its
dynamic behavior has to satisfy the desired specifications.
Yet, once the program has been made, the "making" of the
corresponding process is delegated to the machine.

My second remark is that our intellectual powers are rather
geared to master static relations and that our powers to
visualize processes evolving in time are relatively poorly
developed. For that reason we should do (as wise
programmers aware of our limitations) our utmost to shorten
the conceptual gap between the static program and the
dynamic process, to make the correspondence between the
program (spread out in text space) and the process (spread out
in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time
succession of actions, is stopped after an arbitrary action, what
data do we have to fix in order that we can redo the process
until the very same point?) If the program text is a pure
concatenation of, say, assignment statements (for the purpose
of this discussion regarded the descriptions of single actions)
it is sufficient to point in the program text to a point between
two successive action descriptions. (In the absence of go to
statements I can permit myself the syntactic ambiguity in the
last three words of the previous sentence: if we parse them as
"successive (action descriptions)" we mean successive in text
space; if we parse as "(successive action) descriptions" we
mean successive in time.) Let us call such a pointer to a
suitable place in the- text a "textual index”.

When we include conditional clauses (if B then A.), alternative
clauses (if B then A1 else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of (A1, A2, … , An)) or conditional
expressions as introduced by J: McCarthy (B1 -> E1, B2 ->
E2, ... , Bn -> En), the fact remains that the progress of the
process remains characterized by a single textual index.

As soon as we include in our language procedures we must
admit that a single textual index is no longer sufficient. In the

case that a textual index points 'to the interior of a procedure
body the dynamic progress is only characterized when we also
give to which call of the procedure we refer. With the
inclusion of procedures we can characterize the progress of
the process via a sequence of textual indices, the length of this
sequence being equal to the dynamic depth of procedure
calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to
exclude them: on the one hand, repetition clauses can be
implemented quite comfortably with present day finite
equipment; on the other hand, the reasoning pattern known as
"induction" makes us well equipped to retain our intellectual
grasp on the processes generated by repetition clauses. With
the inclusion of the repetition clauses textual indices are no
longer sufficient to describe the dynamic progress of the
process. With each entry into a repetition clause, however, we
can associate a so-called "dynamic index," inexorably
counting the ordinal number of the corresponding current
repetition. As repetition clauses (just as procedure calls) may
be applied nestedly, we find that now the progress of the
process can always be uniquely characterized by a (mixed)
sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-
up of his program or by the dynamic evolution of the process)
whether he wishes or not. They provide independent
coordinates in which to describe the progress of the process.

Why do we need such independent coordinates? The reason
is-and this seems to be inherent to sequential processes-that
we can interpret the value of a variable only with respect to
the progress of the process. If we wish to count the number, n
say, of people in an initially empty room, we can achieve this
by increasing n by one whenever we see someone entering the
room. In the in-between moment that we have observed
someone entering the room but have not yet performed the
subsequent increase of n its value equals the number of people
in the room minus one!

Page 39 of 50

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful
set of coordinates in which to describe the process progress.
Usually, people take into account as well the values of some
well chosen variables, but this is out of the question because it
is relative to the progress that the meaning of these values is to
be understood! With the go to statement one can, of course,
still describe the progress uniquely by a counter counting the
number of actions performed since program start (viz. a kind
of normalized clock). The difficulty is that such a coordinate,

 ObjectiveView

although unique, is utterly unhelpful. In such a coordinate
system it becomes an extremely complicated affair to define
all those points of progress where, say, n equals the number of
persons in the room minus one!

The go to statement as it stands is just too primitive; it is too
much an invitation to make a mess of one's program. One can
regard and appreciate the clauses considered as bridling its
use. I do not claim that the clauses mentioned are exhaustive
in the sense that they will satisfy all needs, but whatever
clauses are suggested (e.g. abortion clauses) they should
satisfy the requirement that a programmer independent
coordinate system can be maintained to describe the process in
a helpful and manageable way.

It is hard to end this with a fair acknowledgment. Am I to
judge by whom my thinking has been influenced? It is fairly
obvious that I am not uninfluenced by Peter Landin and Chris-
topher Strachey. Finally I should like to record (as I remember
it quite distinctly) how Heinz Zemanek at the pre-ALGOL
meeting in early 1959 in Copenhagen quite explicitly
expressed his doubts whether the go to statement should be
treated on equal syntactic footing with the assignment
statement. To a modest extent I blame myself for not having
then drawn the consequences of his remark.

The remark about the undesirability of the go to statement is
far from new. I remember having read the explicit

recommendation to restrict the use of the go to statement to
alarm exits, but I have not been able to trace it; presumably, it
has been made by C. A. R. Hoare. In [1, Sec. 3.2.1.] Wirth and
Hoare together make a remark in the same direction in
motivating the case construction: "Like the conditional, it
mirrors the dynamic structure of a program more clearly than
go to statements and switches, and it eliminates the need for
introducing a large number of labels in the program.

In [2] Guiseppe Jacopini seems to have proved the (logical)
superfluousness of the go to statement. The exercise to
translate an arbitrary flow diagram more or less mechanically
into a jumpless one, however, is not to be recommended. Then
the resulting flow diagram cannot be expected to be more
transparent than the original one.

1. WIRTH, NIKLAUS, AND HOARE, C. A. R. A contribution to the
development of ALGOL. Comm. ACM 9 (June 1966), 413-432.
2. BUHM, CORRADO, AND JACOPINI, GUISEPPE. Flow diagrams,
 Turing machines and languages with only two formation rules.
Comm. AGM 9 (May 1966), 366-371.

This letter from Edsger W. Dijsktra was originally
published in Communications of the ACM, Volume 11,
Number 3 – March 1968 pp147-148. At the time it
provoked some pretty heated debate, with developers
adopting pro- and anti-goto positions. History, it seems,
has proved Dijkstra right – no-one uses gotos now – do
they?

Advertisment

Page 40 of 50

 ObjectiveView

 ObjectiveView

Page 41 of 50

Opinion ♦ Prefactor and be Agile♦ Ken Pugh♦ Opinion

Ken Pugh’s book “Prefactoring” caused some consternation with “agile”
reviewers on the Amazon web site. Here he answers those critics …

Prefactoring evolved from a
“Birds of a Feather” session at a
Software Development conference
in Washington, D.C. Martin
Fowler, Ron Jeffries, myself, and

several others discussed why software came to need
refactoring and practices that might be used to lessen that
need. Spurred by that discussion, I compiled a set of
guidelines for creating software and entitled it Prefactoring.

Refactoring, according to Martin Fowler, “is a controlled
technique for improving the design of an existing code base.”
“It does this by applying a series of particular code
transformations, each of which are called refactorings.”
“’Code smells’ suggest refactoring.”

Prefactoring guidelines emphasize things to think about
before you start coding. Refactorings are code
transformations performed after you have created code.

The prefactoring guidelines encompass some that are directly
related to code transformations and others that are not. A
commonly used refactoring is Extract Method. The “Separate
Policy from Implementation” prefactoring guideline suggests
organizing methods into ones that perform implementation
(e.g. totaling a customer’s purchases) and ones that perform
policy (e.g. giving the customer a discount based on total
purchases). If you think about this guideline as you develop
the code, you may find yourself separating many methods, and
therefore requiring fewer Extract Methods. Separating policy
from implementation is not an operation you can perform
mechanically. It’s something that you have to do
intentionally. Coding with intention makes your code start
with less smells.

Other prefactoring guidelines do not deal with code
transformations. “The Easiest Code to Debug is That Which
is Not Written”.guideline suggests that you use Google as a
development tool. Before even writing a single line of code,
google to see if the feature you are about to create exists in

either open source or commercially available software. If it is,
check it out. You may get away with not having to write a
single line of code. Even if the software doesn’t work out,
you’ll have an opportunity to see how others have approached
a solution. Developing software is not just about writing
code; it’s about delivering solutions, regardless of how they
are created.

There is no “big design up front” in prefactoring. The “Think
About the Big Picture.” guideline is not about big design. It
suggests that you spend a little bit of time investigating the
environment in which you are going to create your software.
The environment (e.g. a corporate infrastructure, J2EE, or web
services) may provide numerous services (e.g. security or
error handling) that you don’t need to develop or it may
suggest ways for structuring your code to fit into the
framework.

Following the prefactoring guidelines does not mean you
don’t refactor your code. The guidelines can help keep the
smells out. But when code starts to smell, refactor it. As you
go through development, you gain more knowledge about the
total project, which can generate new ideas. Performing a
retrospective after every release, as one guideline states, can
help direct this generation of new ideas.

Agility is about delivering working software to the customer.
Iterative and incremental development and customer
communication, as shown in the example in the book, are key
principles to enable that delivery. You can use multiple tools
to achieve the goal – refactoring – performing transformations
on created code is one tool; prefactoring – thinking about
things before coding is another.

Ken Pugh of Pugh-Killeen Associates
(www.pughkilleen.com) consults and trains on object-oriented
programming, process development, real-time systems, and
UNIX/ Linux.

Have Your Say!
Join the ObjectiveView discussion and feedback group.

Simply visit:
groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView

email: objective.view@ratio.co.uk subject: subscribe

Page 41 of 50

 ObjectiveView

An Analysis of AJAX
An Overview and Critique of Using XMLHTTPRequest in Client-Side Development

SOAP, Flash, AJAX
web-related nomenc
manufacturers have made over time, such as Apple, Apricot, Blackberry,
Pearcom, Pineapple 6502, and …um… Olive-tti. R

Admittedly, the last one str ss I
am cooking up a new appro

s

cale from your boardroom and is called JIF, but I am thinking
ems

 ten
terest, quite as quickly

s AJAX – a moniker for the use of the XMLHTTPRequest
is

ges of this

 – one senses a bathroom-cleanser trend these days in
lature, akin to the fruity allusions that computer

ichard Vaughan explains…

ains the point a little, neverthele
ach to web applications currently,

called VIM – ‘Validated Interface Management’ (or
something). This technology snoops users’ browser-profile
on the sly, but guarantees a nice clean bathtub as
compensation. The enterprise edition removes unsightly lime-
s
of changing this to CIF because nobody outside the UK se
to get the joke.

On a more restrained note, few software issues in the last
years have generated quite so much in
a
class in script-based client-server communication – and th
article examines the nature, implications and challen
surprise development of 2005.

AJAX Defined
Asynchronous JavaScript and XML, or AJAX – an iconic and
memorable acronym – possesses a marketable spirit of élan
and dynamism, but is also rather non-representative. Firstly,
there is no such thing as asynchronous JavaScript per se; this

limited to JavaScript, but
 available from within VBScript as well.

on
nd

rough instances of the XMLHTTPRequest class.
ritically, this is an improvement on other mechanisms.

term refers to the asynchronous nature
of most HTTP-based communication.
Secondly, the technology behind
AJAX is not
is

Moreover, AJAX has nothing to do with XML intrinsically, as
data may be exchanged in any format from raw character
sequences, through proprietary formats, to the serious players
such as JSON and XML (although scope for processing large
binary-datasets is limited in client-side scripting). In fact,
AJAX signifies fully bi-directional client-server transacti
from within client-side scripts, using HTTP directly, a
conducted th
C

Connection Spectrum
To clarify this, consider the (somewhat figurative) diagram.
This lays out the range of client-server communication
techniques available from within a script execution-context
such as a web browser.

Object inclusion

Pop-up Window

Dynamic Script-Inclusion

XML Import

XMLHTTPRequest

Local
Storage

Link Server

Dynamic Stylesheet-Inclusion

Image download

Location manipulation

Browser

TCP/IP
Socket

Form submission

Inline Frame

Proprietary Technology

Frame

Page 42 of 50

At the coarsest level, one can set
window object, which has the sam
URL in the address field of the brow
server communication, but a page ref
that, re-initialisation of the script execution-context. It is only
by recording the values of variables of a previous s
retrieving them subsequently, can t
continuity between programs pertai
This requires saving data in one or more cookies on the client.

 as setting the src attribute
s, preserve continuity of

of useful data. Moreover, they
eans of implementing

relatively transparent (for users) communication with the
e cookie’ technique being an example[1]. The

rd and inelegant design on
comitant development,

testing, and cross-browser issues that such dissonance carries.

the location attribute of the
e effect as entering a literal

The intermediate approaches, such
mage object, or using frame of an i

ser. This embodies client-
resh is implicit and, from

state, and can allow transaction
can be forced into service as a m

cript, and server, the ‘imag
he developer maintain
ning to different pages.

problem is that this foists awkwa
the programmer, with all the con

 ObjectiveView

An alternative is the use of proprietary technolog
Java applets and Flash.

ate between client-se

ies such as
erve program While these too can pres

rver transactions, and allow great st
flexibility, they are disjoint in that they require languages,
platforms and development environments that are quite
distinct from the native calling-context. This can introduce
intra-team impedance, causing design fragmentation, longer
development times, bigger test regimens, and so on
systemically. Then there is the problem of download times:

aiting minutes for some unknown Flash-binary to arrive does w
not endear users with limited bandwidth.

Native Techniques
hese comprise

setting the href attribute of a style link from within a page’s
 is downloaded

of a script element,
 to fetch the relevant script file (‘on-

s therein) are clear: a
g to the user agent in
hmic approach, where
. The next listing

This leaves the truly native approaches. T

script – whereupon the property-set
automatically – or setting the src attribute
which causes the browser
demand’ JavaScript).

In the first case, the choice (and tradeoff
style-sheet can be downloaded accordin
question, as opposed to the more algorit
style properties are changed piece-meal
illustrates this:

<link id = “StyleTag”
 rel = "stylesheet"
 type = "text/css"
 href = “”
 media = "all" />

<script language="JavaScript">

if (navigator.userAgent.indexOf ("MSIE") != -1) LoadStyle (“.../IE_Style.css”);
else
 {
 if (navigator.appName.indexOf ("Netscape" != -1)) LoadStyle (“.../NS_Style.css”);
 // Etc...
 }

function LoadStyle (StyleSheetName)
 {
 document.getElementById (“StyleTag”).href = StyleSheetName;
 }

</script>

In the second case, a script can download
browser/functionality-specific scripts, with similar tradeoffs to
the style-sheet technique.

These methods preserve execution state, yet as with the others,
they work well when the server talks to the client but are
impoverished bi-directionally.

XMLHTTPRequest

In contrast, the XMLHTTPRequest class is a wrapper for an
underlying HTTP connection (although you can only
communicate with the URL from which the script originated,
unlike the on-demand technique). The commonly supported
interface for the XMLHTTPRequest class is depicted in the
next diagram.

Have Your Say!
Join the ObjectiveView discussion and feedback group.

groups.google.com/group/objectiveviewdiscussion

Subscribe to ObjectiveView
email: objective.view@ratio.co.uk subject: subscribe

Page 43 of 50

 ObjectiveView

onreadystatechange
readyState
responseText
responseXML
status
statusText

: function reference
: integer
: string
: DOM Node
: integer
: string

abort
getAllResponseHeaders
getResponseHeader

()
()
(HeaderLabel : string)

(method
 URL
 [, asyncFlag
 [, userName
 [, password

: string,
: string
: boolean
: string
: string]]])

(content : string)
(label : string, value : string)

open

send
setRequestHeader

T
R
R

P
O
S
S
N
H ribing error states

O

Dispatches data to server
Sets the value of a particular header

erminates current transaction
eturns HTTP headers sent by server
eturns a specific header

pens the connection with the server

oints to event-handler function
bject status
erver data as plain character string
erver data as DOM object-hierarchy (if applicable)
umeric code returned by server

an readable string descum

XMLHTTPRequest

 to the onreadystatechange member, and then

L to send the request to, and optional parameters, such as a
ag denoting a synchronous or asynchronous request

until the response
rns). Any data that must be transmitted is passed as a

he reference assigned to onreadystatechange must point
 that is called a number of times during the

ialogue between server and client. This function should test
e readystate and status members of the
MLHTTPRequest object and, assuming success, can process

ormation has been

n the XMLHTTPRequest object

owever, browser incompatibilities are the programmer’s
bane in much of client-side development, and
XMLHTTPRequest is a (minor) challenge here too. All the
major browsers, except IE, support the creation of
XMLHTTPRequest objects as instances of native JavaScript
classes, but Microsoft implement XMLHTTPRequest on
back of ActiveX, which com
versions are possible. The l
issuing a call, and for processin

var RequestObj;

Using this class entails instantiating it, assigning a function {

 try { RequestObj = new ActiveXObject ("Microsoft.XMLHTTP"); reference }
calling open, followed by a call to send. The parameters in

l allow one to stipulate the HTTP method, the the open cal
UR
fl
(synchronous meaning the client waits
retu
string during the call to send.

T
to a function
d
th
X
the data returned (if any) from there. If inf
sent then this can be accessed through the raw character string
represented by the responseText attribute. However, if it is
well-formed X(HT)ML the
will have parsed the data on receipt (you have no choice – see
below), resulting in an XML DOM-object hierarchy that is
available through the responseXML attribute.

H

 catch (e) { throw e; }
 }

 }

RequestObj.onreadystatechange = Handler;

RequestObj.open (Method, URL, SyncFlag, ...);
RequestObj.send (Data);

function Handler ()
 {
 if (RequestObj.readyState == 4)
 {
 if (RequestObj.status == 200) // Do something here with
 // RequestObj.responseText
 // or RequestObj.responseXML
 else throw ("Error");

 }

 }

JSON
As pointed out above, XML is not mandatory, nor need it be
de rigueur, and what is particularly exciting is the use of

MLHTTPRequest in conjunction with JSON or JavaScript
Object Notation.

uggested that a C-
le to the tag-based

argument being that
syntactic and semantic parallels with the C-family of

ake this easier to learn and more human-
re represent true

X

 the
plicates matters; moreover, two

isting depicts typical code for
g the response.

if (window.XMLHttpRequest) RequestObj = new XMLHttpRequest
();
else if (window.ActiveXObject)
 {
 try { RequestObj = new ActiveXObject ("Msxml2.XMLHTTP"); }
 catch (e)

Page 44 of 50

In an article in this journal in 2000[2], I s

ferabrelated format would have been pre
grammar and notation of XML; the

languages would m
readable than XML, and would therefo
standards-unification.

 ObjectiveView

<!-- An invoice element in XML -->

<Invoice InvNum = “43508”
 InvDate = “23/07/2005”
 PONum = “53098”>

 <Item Desc = “Bolts” Num = “20” Price = “0.12” />
 <Item Desc = “Washers” Num = “10” Price = “0.13” />
 <Item Desc = “Screws” Num = “15” Price = “0.05” />

</Invoice>

// The same data encoded in JavaScript object-literal syntax

Invoice =
 {
 InvNum : “43508”,
 InvDate : “23/07/2005”,
 PONum : “53098”,
 Items : [{ Desc : “Bolts”, Num : “20”, Price : “0.12” },
 { Desc : “Washers”, Num : “10”, Price : “0.13” },
 { Desc : “Screws”, Num : “15”, Price : “0.05” }]
 }

JSON is that idea incarnate: being a subset of JavaScript’s

bject-literal syntax, it relates implicitly to run-time objects,

ich

ows the

ology is required. JavaScript’s eval function (part of the

urn a

o
and thus removes all impedance between the communication
format and object representation in client-side code. In
addition, and in contrast with XML’s verbose syntax, JSON’s
parsimony gives an improved ‘content to markup’ ratio, wh
makes it considerably more resource-efficient and human-
readable than XML ever could be. The listing above sh
same data set encoded in XML and JSON.

A principal advantage to JSON is that no special parsing
techn
underlying ECMAScript standard) allows direct invocation of
the interpreter, and when passed a JSON string it will ret
fully-fledged object that can be manipulated using standard
notation. The next listing illustrates this.

var InvObj = eval(“(“
 + “{ InvNum : ‘43508’, InvDate : ‘23/07/2005’ }”
 + “)”);

alert (InvObj.InvDate); // Displays 23/07/2005

It follows that object-literal strings transmitted by the server
an be passed to eval on the ient, yielding datc cl a in native

es

form. The reverse process – ‘stringifying’ an object – requir
only a modest function[3], before data can be passed back to
the server. Contrast the transparency of this approach with
XML, which frequently requires complex parsing
technologies and DOM operations, with all the inefficiencies
therein.

First-Order Implications
The core implications of XMLHTTPRequest are clear. Form

ated on the fly, and without using awkward
chniques, because the application can send the content of

or users, the page remains on
 is drawn to any illegal values by

It also implies dynamic page-construction: X(HT)ML data can
be requested, and when received the resulting object-hierarchy
can be manipulated, as with any DOM tree, and/or included in
part or whole into the structure of the page. Alternatively, text
can be requested, and then placed as content into page
elements upon receipt. The listing illustrates this, and shows
the code required for displaying (on a rolling basis) the
number of users logged on to a system.

<script language="JavaScript">

var NumUsers_RequestObj = null;
var NumUsers_Elem = null;

function Init ()
 {
 NumUsers_Elem = document.getElementById ('NumUsers');
 GetNumUsers ();
 }

function GetNumUsers ()
 {
 try { NumUsers_RequestObj = IssueXHR ("POST

data can be valid
te
each input element to the server transparently as the user
moves from field to field. F

en, while their attentionscre
means of DHTML techniques.

",
 ".../NumUsers.php",
 "",
 true,
 DisplayNumUsers); }

 catch (e) { alert ("Error sending request - "
 + e.name
 + ": "
 + e.message); }

 setTimeout ("GetNumUsers ()", 5000); // Triggers every 5 seconds

 }

function DisplayNumUsers ()
 {
 if (NumUsers_RequestObj.readyState == 4)
 {
 if (NumUsers_RequestObj.status != 200) throw ("Error");
 NumUsers_Elem.innerText = NumUsers_RequestObj.responseText;
 }
 }

function IssueXHR (Method, URL, Data, ASync, Handler)
 {
 // Code for creating XMLHTTPRequest, then opening and sending
etc.
 }

</script>

<body onload = "Init ()">
 Users Logged on Currently =
</body>

Further to this, and while this is not part of JSON per se,
JavaScript Object-Literal definitions can contain functions,
meaning that the server can send procedures as and when they
re needed. It follows that a page can change its functionality
n the fly; implying applications that can be downloaded in a

s a
t

d

ajor phase over the next few years of
dical site-redesign in preference for user interfaces that
semble conventional desktop applications. Visitors to, for

a
o
minimal form initially, and which develop their functionality
contingently and dynamically from there. In the main, this i
more fine-grained alternative to the on-demand approach, bu
what is so attractive is that both techniques mean you nee
only pay for what you use. Clearly, this offers positive
bandwidth and storage-requirements tradeoffs.

These points imply a m
ra

Page 45 of 50

re

 ObjectiveView

example, a railway-timetable site will be able to enter places,
hile the appropriate service-

ly in adjacent parts of the page.
 re-design, XMLHTTPRequest

se implementation (previously)
ould prove challenging if not completely impracticable.

owever, there are also negative implications: the price of

om the
e

dates and times of departure, w
details appear automatical
Moreover, and beyond site
implies applications who
w

H
freedom is responsibility, and XMLHTTPRequest gives the
irresponsible developer the freedom to implement user
interfaces that are clever in principle but frustrating in
practice. Imagine reading a block of content, only to find it
disappears from view as the script receives some data fr
server and then updates the page dynamically, thus causing th
browser to scroll your point of interest out of sight.

:Server :Client :Server

Response

Request

 ()M

:Client

Response

Request

M ()

Concurrency Concerns
n additional concern lies with concurrencyA because

se the response is
ufficiently tardy. In the right-hand case, however, the client

e (and thus executes its response handler)
hat may

to resolve. To compound this, multiple
potential for such

roblems exponentially with each communication thread that
t

s

asynchronous communication with the server means the
potential for race conditions. In the diagram, method M must
execute before the request returns, because some of the objects
it manipulates contain data that can be changed by the
response from the server.

ll is well in the left-hand scenario, becauA
s
receives the respons
before M has completed, thereby invoking a bug t
prove difficult
concurrent XMLHTTPRequests increase the
p
is added to the execution context. The solution is to implemen
some form of locking, although multiple concurrent threads
then introduce the potential for deadlock. These points are not
unique to XMLHTTPRequest, as they apply to Java applets
etc, but as with those, and with traditional application
development, the only realistic way to manage such problem
is good design.

The Ethical Dimension
me of which hold

e

re more cynical. It is entirely possible to capture browsing

erns very precisely, which suggests that certain types of
timation of a given user’s

ographic profile in real time. In principle this would allow
lar user-type to be

 user’s

There are, however, other implications, so
out exciting possibilities, and some that are less desirable. One
example is the potential to capture users’ site-navigation
patterns through mouse and keystroke events, and return thes
transparently to the server. By such means, it would be
possible to build a statistical picture of the way that users
interact with a site, thus allowing remodelling and refinement
to reflect this, and thereby provide a better user-experience.
This is clearly of benefit to all.

However, other potential applications of XMLHTTPRequest
a
patt
application could allow es
dem
adverts that were targeted at that particu
placed within a page dynamically (indeed, before the
very eyes).

Heat or Light
Understandably, XMLHTTPRequest also has its critics, and
one area of debate (that seems to generate more heat than

t) is over issues of URL-linearity, site indexing and the so-
oken back-button’. Some have used these points to

ecry the viability of AJAX-style techniques (on-demand
e same position), yet the fact is that

sed

 for
tables

ligh
called ‘br
d
JavaScript is in much th
you can ot have your static browsing-cake and eat it. By n
definition, to introduce a dynamic component into web-ba
systems is to depart from the fixed-page model upon which
these concepts rely.

In the case of the back-button, this was never more than a
browser control that unwinds the URL-visitation history for a
given window. It was never intended to support arbitrary
undo-mechanisms; therefore one cannot really bemoan the
loss of functionality that was never present originally. In the
case of site indexing, it is obvious that the data-sets that
traditional desktop-applications manipulate (web pages,
xample) can be catalogued, as can binary execu

Page 46 of 50

e
themselves (this really does happen[4]). Yet the concept of a
running program embodies the very notion of ever-changing
state, and in this respect executable code constitutes an index

 ObjectiveView

into a particular state-space; one that search engines can never
be suited to cataloguing.

Conflation
A lasting criticism, however, is that XMLHTTPRequest w

esigned rather poorly. Class names with numerous syllab
as
les

en reflect conflation of abstraction and, from that,
nctionality and XMLHTTPRequest (nine syllables – tedious

peatedly when teaching AJAX courses) is a
ood example. As the fact of JSON shows, XML need not be

the preferred medium, yet XMLHTTPRequest unifies XML
formatting with HTTP connectivity, which are two different
issues entirely – XML-processing capability comes along for
the ride anyway, whether one desires it or not.

More subtly, one may actually wish to transact X(HT)ML
data, but wish to avoid automatic parsing, for reasons of
resource management when striking a balance between lazy
and eager evaluation. Alternatively, developers may wish to
implement some form of proprietary XML-parsing that is
better suited to the application – a DOM parser is a relatively
heavyweight affair, and mobile devices put a squeeze on
resources. To stir politics into the mix, IT-related but non-
technical colleagues (management) are likely to assume
instantly that XMLHTTPRequest is about XML intrinsically,
making it all the harder to convince them that XML is not all

at it is cracked up to be, and that better alternatives exist.

lementing the spirit of
ion

d
oft
fu
to rattle-off re
g

th

A preferable approach, therefore, to imp
XMLHTTPRequest would be a simple HTTP-connect
class. This would implement client-server communication
independently from the format in which data was transferred,
and would have no fixed association with XML, thus leaving
client-code response handlers free to process the data returned
as they saw fit.

Performance and Redundancy
Another criticism is that the exception-handling technique that
is required to work around browser incompatibilities can be
considered an abuse of the exception-handling mechanism.
However, the real problem with this is that it is slow.
Obviously, ultra-performant code may not be the prime mover
in client-side programming, but the inherent inelegance of this
approach does tend to set one’s teeth on edge.

Further to this, the response handler must check the
readyState and status members of the
XMLHTTPRequest object, and only proceed with proc
the response if the transaction has both completed, and
completed succe

essing

ssfully. It seems that no meaningful
processing can be done before satisfaction of both these

ing should be the conditions, which suggests that this check
responsibility of the XMLHTTPRequest object, not client-
code, and which would result in simplified response-handlers
were the class implemented this way.

Polymorphism and Closure
Happily, a polymorphic solution to the performance proble
is possible, where the correct creation-statement is determined
on the first call to instantiate an XMLHTTPRequest object
(using the exception-handling ap

m

proach, in part), and is then

nse

var NumUsers_RequestObj = IssueXHR ("POST",

called through a function reference whenever a connection
object is required[5].

In the case of the redundant checking-logic in the respo
handler: this can be solved using the rather more exotic
technique of JavaScript closures, and the listing illustrates the
technique.

 ".../NumUsers.php",
 "",
 true,
 DisplayNumUsers);

function IssueXHR (Method, URL, Data, ASync, ResponseHandler)
 {
 var XHRObj = ... // Code for creating XMLHTTPRequest object

 XHRObj.onreadystatechange = function ()
 {
 if (XHRObj.readyState == 4)
 {
 if (XHRObj.status == 200) ResponseHandler (XHRObj);
 else throw (“Transaction complete but unsuccessful");
 }

 };

 XHRObj.open (Method, URL, ASync);
 XHRObj.send (Data);
 return XHRObj;
 }

function DisplayNumUsers (XHRObj)
 {
 NumUsers_Elem.innerText = XHRObj.responseText;
 }

Here a ‘base’ response handler is defined as an anonymous
inner-function within IssueXHR, and every
XMLHTTPRequest object created refers to that function
through its onreadystatechange member. As before, the
XMLHTTPRequest returned by IssueXHR is not garbage
ollected because it is referred to at global scope. However,

ct’s reference to the base
nsures preservation of the scope chain

ler. This allows the base response-
f

y
f

c
the XMLHTTPRequest obje
response-handler also e
stretching from that function back to the global execution-
context. In other words, the parameters passed into a given
call to IssueXHR, along with its local reference to the
XMLHTTPRequest object that it returns, persist as long as the
XMLHTTPRequest object does – this is a closure.

The key factor is that each invocation of IssueXHR creates a
distinct scope-chain. This means that when the base response-
handler is executed, the XMLHTTPRequest object in whose
context it is being called is visible, as is the reference to the
lient’s response handc

Page 47 of 50

handler to check the readyState and status members o
the XMLHTTPRequest object, and then call the correct client
response-handler (passing the XMLHTTPRequest object) on
successful completion of the transaction.

Gratifyingly, this means the client’s response handler can be
reduced to just the code for manipulating the data returned b
the server, and if client code is not interested in the data, or i
no data is returned, then the handler can be a simple empty
function (which is an instance of the Null Object design-
pattern)

 ObjectiveView

On Balance
The reality of AJAX is that XMLHTTPRequest – given

JavaScript, and dynamic style-sheet
e (albeit powerful) resource in web-based

ck using

e

al… I’ll think
f it soon.

JSON, on-demand
loading – is but on
client-server development. It follows that it should be viewed
in combination and on balance with these other techniques.
Moreover, there are problems that developers will atta
XMLHTTPRequest that may far more soluble using one or
more of the related approaches.

Finally, and for non-UK readers who may be perplexed by th
introduction to this piece: Ajax is one particular brand of
bathroom/kitchen cleanser, as is/was the case with Flash, Cif
(neé Jif, in the UK), and Vim. Validated… virtu
o

References
[1] Image-Cookie technique www.ashleyit.com/rs/rslite/

] A Profile of XML Richard Vaughan - ObjectiveView Issue 4 (February [2
2000) - www.ratio.co.uk
[3] JSON - www.json.org
[4] Finding Binary Clones with Opstrings & Function Digests
Andrew Schulman - Dr Dobbs Journal of Programming - July, August &
September 2005

Further Reading
www.ajaxinfo.com
www.ajaxian.com
www.ajaxmatters.com
www.ajaxpatterns.org

Richard Vaughan is a software developer, trainer and
consultant.

advertisment

`

Page 48 of 50

 ObjectiveView

Books

 to look out for …

Prefactoring – Ken Pugh

ve to adm
ok. Not ry goes round in circles or anything -

 it seemed rise of "refactoring" as
technique, that lly say - "hey, why don't we
write our code factor it!" Of course it is more

icated t s in the book - many of his
factoring t uring refactoring.

ow, cert
good design a
manner. Perha y - some Amazon reviews see this book
as an le" methods but I think they miss a fundamental
point - good design advice is good design advice - regardless of
whether you emphasise
more design up front or refactoring existing code. As with all
books - keep an open mind - and take what you think is
valuable from it!

I ha
this bo
but

it having a smile on my face when I saw the title of
 that our indust
inevitable that given the
 someone would fina

 re so we don't have to
compl
pre

Anyh

han that - and as Ken say
dechniques were learned

ainly worth a look at this book - it containts a lot of
dvice that you can apply in a pre- or post-factoring
ps inevitabl

 attack on "agi

Programming Ruby - Dave Thomas

Dave Thomas has written an excellent introduction to the Ruby
programming language - covering all aspects from classes and
object through exception handling, modularity,
threads and processes to unit testing and using Ruby in a Windows
environment. At over 800 pages, it's certainly a tome, but each
page is put to good use and there's an invaluable full library
reference thrown in to boot!

If you're serious about using Ruby you need this book.

Agile Web Development with Rails

Dave Thomas and David Heinemeier Hansson

Another excellent book from Dave Thomas, this time teaming up
with Rails creator David Heinemeier Hansson.
Learning Rails is not such a difficult job, and with this book it's
made even easier. The book covers the Action Views
(presentation), Active Record (object-relational mapping) and
Action Controller subsystems, and takes the reader step by step
(agile style) through the development of an web application.

Rails is well worth a look - and this book is a welcome addition to
available Rails resources.

Page 49 of 50

 ObjectiveView

advertisment

AJAX and Advanced Javascript Training
 (2 days)

While JavaScript lacks many features found in more powerful languages, and that they experience, the
complexity of modern web sites and their functionality m any
advanced approaches and techniques as possible. This tw from
there, develops powerful principles; including the use of he use
of object decoration in performing complex processing o

 escapes the heavy demands
eans that the serious JavaScript developer benefits from acquiring as m
o-day course establishes fundamental aspects of design theory, and
the Strategy pattern to circumvent cross-browser coding headaches, t
f user input, and 'AJAX' or Asynchronous JavaScript and XML.

Who Should Attend
This course is appropriate to client and server-side devel ript and HTML is
not essential, although some basic understanding of these anguages is assumed.

opers alike. Advanced knowledge and experience of JavaSc
 l

Benefits
On completion of this course delegates will be able to:

• Understand browser implementation fundament
• Understand the role of AJAX in client-server de
• Instantiate and use XMLHTTPRequest bjects
• Understand and use the Hyper-Text Transfer Pr
• Select and implement appropriate data encoding
• Understand and use JS N encoding techniques
• Avoid potential threading-problems and race conditions
• Work around AJAX/JavaScript limitations
• Implement user interfaces that employ AJAX te

als
velopment

o
otocol
 and formats

O

chniques

Syllabus
Client-server programming overview

Basic JavaScript Recap

• Built-in types, operators
• Flow control, functions and object scope

Advanced JavaScript
• Objects and classes
• Object and class exten n, prototype properties
• The global object and predefined classes
• User-defined classes
• Hard-coded class methods
• Parameterised methods – polymorphism and the

strategy pattern
• Exception handling

Client-side JavaScript
• XML in brief, the XML DOM
• Browser objects and the HTML DOM
• CSS and the HTML DOM
• Events and timers
• Using the Decorator pattern to implement comp

functionality
• Using the Strategy pattern to resolve browser

incompatibilities

AJAX
natives

• XMLHTTPRequest basics
• Object instantiation, sending and receiving data
• HTTP in depth
• Synchronous and asynchronous requests

Avoiding race conditions

ions
es

xt, JSON, XML,

 detection,

ore information email
info@ratio.co.uk

sio

• Binary streams
• User interface considerat

lex

For m

• Client to server connection-alter

• Accessing third-party feeds
• Caching and latency considerations
•

• Usage-pattern and error-logging techniqu
• Data transfer formats – plain te

HTML
• Further uses of XMLHTTPRequest (URL

‘last modified’ detection etc.)

 or call
+44 (0) 208 579 7900.

Page 50 of 50

	Help, What Am I Doing In This Nutshell?!
	Contraindicators
	Vitals—Stat!
	Feature Fantastic
	Are You My Mommy?
	Ruby's also made to be readable, as in English:
	Zen is In

	Dive In—You Won't Break Your Neck
	A Little Experimentation Never Hurt Anyone
	Now, something a little less like third grade math class:
	Basic Types
	Which Type Are You?

	Duck Typing
	Modules & Mixins
	Healthy eating?

	Fancier Stuff
	An Object Lesson
	Readin' & Writin' in One Line (Each)
	Methods to the Madness
	Message in a Parenthesis

	One Last Trick
	So Long, Farewell...
	An Example Application
	Getting Started
	Database Configuration
	Rails Modes (Development, Test and Production)
	HTTP Request Handling
	Application Code
	Introducing Rake
	ActiveRecord Models
	More Generators
	The User Model
	Testing
	User Interfaces in Rails
	Controllers
	Templates
	Conclusion
	Example – Caching as a Crosscutting Concern
	AspectJ to the Rescue
	Weaving
	Join points
	Aspects, Pointcuts and Advice
	Aspects
	Pointcuts
	Advice
	Before Advice
	After advice
	Around advice

	Inter-type declarations
	Field introduction
	Method and constructor introduction
	Interface and super type manipulation

	And finally… @AspectJ Annotations
	Conclusions
	References

	AJAX Defined
	Connection Spectrum
	Native Techniques
	XMLHTTPRequest

	JSON
	First-Order Implications
	Concurrency Concerns
	The Ethical Dimension
	Heat or Light
	Conflation
	Performance and Redundancy
	Polymorphism and Closure
	On Balance
	References
	Further Reading
	Who Should Attend
	Benefits
	Syllabus

